add float32 unit_test for depthwise convolution
Signed-off-by: Jing.Deng <Jing.Deng@verisilicon.com>
This commit is contained in:
parent
e2c52d2d8a
commit
c77217745f
|
|
@ -0,0 +1,473 @@
|
|||
#include "gtest/gtest.h"
|
||||
#include "tim/vx/context.h"
|
||||
#include "tim/vx/graph.h"
|
||||
#include "tim/vx/ops/conv2d.h"
|
||||
#include "tim/vx/types.h"
|
||||
|
||||
TEST(DepthwiseConv, shape_2_3_2_1_float32_SimpleTest) {
|
||||
auto ctx = tim::vx::Context::Create();
|
||||
auto graph = ctx->CreateGraph();
|
||||
|
||||
tim::vx::ShapeType input_shape({2, 3, 2, 1}); //whcn
|
||||
tim::vx::ShapeType weight_shape({2, 2, 4, 1}); //whoi
|
||||
tim::vx::ShapeType bias_shape({weight_shape[2]});
|
||||
tim::vx::ShapeType output_shape(
|
||||
{1, 2, weight_shape[2], input_shape[3]}); //whcn
|
||||
|
||||
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, input_shape,
|
||||
tim::vx::TensorAttribute::INPUT);
|
||||
tim::vx::TensorSpec weight_spec(tim::vx::DataType::FLOAT32, weight_shape,
|
||||
tim::vx::TensorAttribute::CONSTANT);
|
||||
tim::vx::TensorSpec bias_spec(tim::vx::DataType::FLOAT32, bias_shape,
|
||||
tim::vx::TensorAttribute::CONSTANT);
|
||||
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, output_shape,
|
||||
tim::vx::TensorAttribute::OUTPUT);
|
||||
|
||||
// Input data nchw
|
||||
std::vector<float> input_data = {1, 7, 3, 9, 5, 11, 2, 8, 4, 10, 6, 12};
|
||||
|
||||
// weight data iohw
|
||||
std::vector<float> weight_data = {1, -9, 5, 13, 2, 10, 6, -14,
|
||||
3, -11, 7, 15, 4, 12, 8, -16};
|
||||
|
||||
// bias data
|
||||
std::vector<float> bias_data = {1, 2, 3, 4};
|
||||
|
||||
// nchw
|
||||
std::vector<float> golden = {71, 91, -34, -26, 99, 127, -20, -4};
|
||||
|
||||
auto input_tensor = graph->CreateTensor(input_spec);
|
||||
auto weight_tensor = graph->CreateTensor(weight_spec, weight_data.data());
|
||||
auto bias_tensor = graph->CreateTensor(bias_spec, bias_data.data());
|
||||
|
||||
auto output_tensor = graph->CreateTensor(output_spec);
|
||||
|
||||
auto padding = tim::vx::PadType::VALID;
|
||||
std::array<uint32_t, 2> stride({1, 1});
|
||||
std::array<uint32_t, 2> dilation({1, 1});
|
||||
int32_t multiplier = weight_shape[2] / input_shape[2];
|
||||
|
||||
auto conv2d = graph->CreateOperation<tim::vx::ops::Conv2d>(
|
||||
padding, stride, dilation, multiplier);
|
||||
(*conv2d)
|
||||
.BindInput(input_tensor)
|
||||
.BindInput(weight_tensor)
|
||||
.BindInput(bias_tensor)
|
||||
.BindOutput(output_tensor);
|
||||
|
||||
EXPECT_TRUE(graph->Compile());
|
||||
|
||||
input_tensor->CopyDataToTensor(input_data.data());
|
||||
|
||||
EXPECT_TRUE(graph->Run());
|
||||
|
||||
uint32_t output_size = 1;
|
||||
for (auto i : output_tensor->GetShape()) {
|
||||
output_size *= i;
|
||||
}
|
||||
std::vector<float> output(output_size);
|
||||
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
|
||||
EXPECT_EQ(golden, output);
|
||||
}
|
||||
|
||||
TEST(DepthwiseConv, shape_2_3_2_1_float32_StrideTest) {
|
||||
auto ctx = tim::vx::Context::Create();
|
||||
auto graph = ctx->CreateGraph();
|
||||
|
||||
tim::vx::ShapeType input_shape({2, 3, 2, 1}); //whcn
|
||||
tim::vx::ShapeType weight_shape({2, 2, 4, 1}); //whoi
|
||||
tim::vx::ShapeType bias_shape({weight_shape[2]});
|
||||
tim::vx::ShapeType output_shape(
|
||||
{1, 1, weight_shape[2], input_shape[3]}); //whcn
|
||||
|
||||
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, input_shape,
|
||||
tim::vx::TensorAttribute::INPUT);
|
||||
tim::vx::TensorSpec weight_spec(tim::vx::DataType::FLOAT32, weight_shape,
|
||||
tim::vx::TensorAttribute::CONSTANT);
|
||||
tim::vx::TensorSpec bias_spec(tim::vx::DataType::FLOAT32, bias_shape,
|
||||
tim::vx::TensorAttribute::CONSTANT);
|
||||
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, output_shape,
|
||||
tim::vx::TensorAttribute::OUTPUT);
|
||||
|
||||
// Input data nchw
|
||||
std::vector<float> input_data = {1, 7, 3, 9, 5, 11, 2, 8, 4, 10, 6, 12};
|
||||
|
||||
// weight data iohw
|
||||
std::vector<float> weight_data = {1, -9, 5, 13, 2, 10, 6, -14,
|
||||
3, -11, 7, 15, 4, 12, 8, -16};
|
||||
|
||||
// bias data
|
||||
std::vector<float> bias_data = {1, 2, 3, 4};
|
||||
|
||||
// nchw
|
||||
std::vector<float> golden = {71, -34, 99, -20};
|
||||
|
||||
auto input_tensor = graph->CreateTensor(input_spec);
|
||||
auto weight_tensor = graph->CreateTensor(weight_spec, weight_data.data());
|
||||
auto bias_tensor = graph->CreateTensor(bias_spec, bias_data.data());
|
||||
|
||||
auto output_tensor = graph->CreateTensor(output_spec);
|
||||
|
||||
auto padding = tim::vx::PadType::VALID;
|
||||
std::array<uint32_t, 2> stride({2, 2});
|
||||
std::array<uint32_t, 2> dilation({1, 1});
|
||||
int32_t multiplier = weight_shape[2] / input_shape[2];
|
||||
|
||||
auto conv2d = graph->CreateOperation<tim::vx::ops::Conv2d>(
|
||||
padding, stride, dilation, multiplier);
|
||||
(*conv2d)
|
||||
.BindInput(input_tensor)
|
||||
.BindInput(weight_tensor)
|
||||
.BindInput(bias_tensor)
|
||||
.BindOutput(output_tensor);
|
||||
|
||||
EXPECT_TRUE(graph->Compile());
|
||||
|
||||
input_tensor->CopyDataToTensor(input_data.data());
|
||||
|
||||
EXPECT_TRUE(graph->Run());
|
||||
|
||||
uint32_t output_size = 1;
|
||||
for (auto i : output_tensor->GetShape()) {
|
||||
output_size *= i;
|
||||
}
|
||||
std::vector<float> output(output_size);
|
||||
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
|
||||
EXPECT_EQ(golden, output);
|
||||
}
|
||||
|
||||
TEST(DepthwiseConv, shape_2_3_2_1_float32_PaddingTest) {
|
||||
auto ctx = tim::vx::Context::Create();
|
||||
auto graph = ctx->CreateGraph();
|
||||
|
||||
tim::vx::ShapeType input_shape({2, 3, 2, 1}); //whcn
|
||||
tim::vx::ShapeType weight_shape({2, 2, 4, 1}); //whoi
|
||||
tim::vx::ShapeType bias_shape({weight_shape[2]});
|
||||
tim::vx::ShapeType output_shape(
|
||||
{1, 1, weight_shape[2], input_shape[3]}); //whcn
|
||||
|
||||
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, input_shape,
|
||||
tim::vx::TensorAttribute::INPUT);
|
||||
tim::vx::TensorSpec weight_spec(tim::vx::DataType::FLOAT32, weight_shape,
|
||||
tim::vx::TensorAttribute::CONSTANT);
|
||||
tim::vx::TensorSpec bias_spec(tim::vx::DataType::FLOAT32, bias_shape,
|
||||
tim::vx::TensorAttribute::CONSTANT);
|
||||
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, output_shape,
|
||||
tim::vx::TensorAttribute::OUTPUT);
|
||||
|
||||
// Input data nchw
|
||||
std::vector<float> input_data = {1, 7, 3, 9, 5, 11, 2, 8, 4, 10, 6, 12};
|
||||
|
||||
// weight data iohw
|
||||
std::vector<float> weight_data = {1, -9, 5, 13, 2, 10, 6, -14,
|
||||
3, -11, 7, 15, 4, 12, 8, -16};
|
||||
|
||||
// bias data
|
||||
std::vector<float> bias_data = {1, 2, 3, 4};
|
||||
|
||||
// nchw
|
||||
std::vector<float> golden = {71, -34, 99, -20};
|
||||
|
||||
auto input_tensor = graph->CreateTensor(input_spec);
|
||||
auto weight_tensor = graph->CreateTensor(weight_spec, weight_data.data());
|
||||
auto bias_tensor = graph->CreateTensor(bias_spec, bias_data.data());
|
||||
|
||||
auto output_tensor = graph->CreateTensor(output_spec);
|
||||
|
||||
auto padding = tim::vx::PadType::SAME;
|
||||
std::array<uint32_t, 2> stride({2, 2});
|
||||
std::array<uint32_t, 2> dilation({1, 1});
|
||||
int32_t multiplier = weight_shape[2] / input_shape[2];
|
||||
|
||||
auto conv2d = graph->CreateOperation<tim::vx::ops::Conv2d>(
|
||||
padding, stride, dilation, multiplier);
|
||||
(*conv2d)
|
||||
.BindInput(input_tensor)
|
||||
.BindInput(weight_tensor)
|
||||
.BindInput(bias_tensor)
|
||||
.BindOutput(output_tensor);
|
||||
|
||||
EXPECT_TRUE(graph->Compile());
|
||||
|
||||
input_tensor->CopyDataToTensor(input_data.data());
|
||||
|
||||
EXPECT_TRUE(graph->Run());
|
||||
|
||||
uint32_t output_size = 1;
|
||||
for (auto i : output_tensor->GetShape()) {
|
||||
output_size *= i;
|
||||
}
|
||||
std::vector<float> output(output_size);
|
||||
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
|
||||
EXPECT_EQ(golden, output);
|
||||
}
|
||||
|
||||
TEST(DepthwiseConv, shape_9_9_1_1_float32_DilationValidTest) {
|
||||
auto ctx = tim::vx::Context::Create();
|
||||
auto graph = ctx->CreateGraph();
|
||||
|
||||
tim::vx::ShapeType input_shape({9, 9, 1, 1}); //whcn
|
||||
tim::vx::ShapeType weight_shape({3, 3, 1, 1}); //whoi
|
||||
tim::vx::ShapeType bias_shape({weight_shape[2]});
|
||||
tim::vx::ShapeType output_shape(
|
||||
{3, 3, weight_shape[2], input_shape[3]}); //whcn
|
||||
|
||||
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, input_shape,
|
||||
tim::vx::TensorAttribute::INPUT);
|
||||
tim::vx::TensorSpec weight_spec(tim::vx::DataType::FLOAT32, weight_shape,
|
||||
tim::vx::TensorAttribute::CONSTANT);
|
||||
tim::vx::TensorSpec bias_spec(tim::vx::DataType::FLOAT32, bias_shape,
|
||||
tim::vx::TensorAttribute::CONSTANT);
|
||||
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, output_shape,
|
||||
tim::vx::TensorAttribute::OUTPUT);
|
||||
|
||||
// Input data nchw
|
||||
std::vector<float> input_data = {
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1,
|
||||
0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
|
||||
|
||||
// weight data iohw
|
||||
std::vector<float> weight_data = {1, 2, 3, 4, 5, 6, 7, 8, 9};
|
||||
|
||||
// bias data
|
||||
std::vector<float> bias_data = {0};
|
||||
|
||||
// nchw
|
||||
std::vector<float> golden = {5, 5, 5, 5, 5, 5, 5, 5, 5};
|
||||
|
||||
auto input_tensor = graph->CreateTensor(input_spec);
|
||||
auto weight_tensor = graph->CreateTensor(weight_spec, weight_data.data());
|
||||
auto bias_tensor = graph->CreateTensor(bias_spec, bias_data.data());
|
||||
|
||||
auto output_tensor = graph->CreateTensor(output_spec);
|
||||
|
||||
auto padding = tim::vx::PadType::VALID;
|
||||
std::array<uint32_t, 2> stride({1, 1});
|
||||
std::array<uint32_t, 2> dilation({3, 3});
|
||||
int32_t multiplier = weight_shape[2] / input_shape[2];
|
||||
|
||||
auto conv2d = graph->CreateOperation<tim::vx::ops::Conv2d>(
|
||||
padding, stride, dilation, multiplier);
|
||||
(*conv2d)
|
||||
.BindInput(input_tensor)
|
||||
.BindInput(weight_tensor)
|
||||
.BindInput(bias_tensor)
|
||||
.BindOutput(output_tensor);
|
||||
|
||||
EXPECT_TRUE(graph->Compile());
|
||||
|
||||
input_tensor->CopyDataToTensor(input_data.data());
|
||||
|
||||
EXPECT_TRUE(graph->Run());
|
||||
|
||||
uint32_t output_size = 1;
|
||||
for (auto i : output_tensor->GetShape()) {
|
||||
output_size *= i;
|
||||
}
|
||||
std::vector<float> output(output_size);
|
||||
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
|
||||
EXPECT_EQ(golden, output);
|
||||
}
|
||||
|
||||
TEST(DepthwiseConv, shape_3_3_1_1_float32_DilationSameTest) {
|
||||
auto ctx = tim::vx::Context::Create();
|
||||
auto graph = ctx->CreateGraph();
|
||||
|
||||
tim::vx::ShapeType input_shape({3, 3, 1, 1}); //whcn
|
||||
tim::vx::ShapeType weight_shape({2, 2, 1, 1}); //whoi
|
||||
tim::vx::ShapeType bias_shape({weight_shape[2]});
|
||||
tim::vx::ShapeType output_shape(
|
||||
{3, 3, weight_shape[2], input_shape[3]}); //whcn
|
||||
|
||||
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, input_shape,
|
||||
tim::vx::TensorAttribute::INPUT);
|
||||
tim::vx::TensorSpec weight_spec(tim::vx::DataType::FLOAT32, weight_shape,
|
||||
tim::vx::TensorAttribute::CONSTANT);
|
||||
tim::vx::TensorSpec bias_spec(tim::vx::DataType::FLOAT32, bias_shape,
|
||||
tim::vx::TensorAttribute::CONSTANT);
|
||||
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, output_shape,
|
||||
tim::vx::TensorAttribute::OUTPUT);
|
||||
|
||||
// Input data nchw
|
||||
std::vector<float> input_data = {1, 1, 1, 1, 1, 1, 1, 1, 1};
|
||||
|
||||
// weight data iohw
|
||||
std::vector<float> weight_data = {1, 2, 3, 4};
|
||||
|
||||
// bias data
|
||||
std::vector<float> bias_data = {0};
|
||||
|
||||
// nchw
|
||||
std::vector<float> golden = {4, 7, 3, 6, 10, 4, 2, 3, 1};
|
||||
|
||||
auto input_tensor = graph->CreateTensor(input_spec);
|
||||
auto weight_tensor = graph->CreateTensor(weight_spec, weight_data.data());
|
||||
auto bias_tensor = graph->CreateTensor(bias_spec, bias_data.data());
|
||||
|
||||
auto output_tensor = graph->CreateTensor(output_spec);
|
||||
|
||||
auto padding = tim::vx::PadType::SAME;
|
||||
std::array<uint32_t, 2> stride({1, 1});
|
||||
std::array<uint32_t, 2> dilation({2, 2});
|
||||
int32_t multiplier = weight_shape[2] / input_shape[2];
|
||||
|
||||
auto conv2d = graph->CreateOperation<tim::vx::ops::Conv2d>(
|
||||
padding, stride, dilation, multiplier);
|
||||
(*conv2d)
|
||||
.BindInput(input_tensor)
|
||||
.BindInput(weight_tensor)
|
||||
.BindInput(bias_tensor)
|
||||
.BindOutput(output_tensor);
|
||||
|
||||
EXPECT_TRUE(graph->Compile());
|
||||
|
||||
input_tensor->CopyDataToTensor(input_data.data());
|
||||
|
||||
EXPECT_TRUE(graph->Run());
|
||||
|
||||
uint32_t output_size = 1;
|
||||
for (auto i : output_tensor->GetShape()) {
|
||||
output_size *= i;
|
||||
}
|
||||
std::vector<float> output(output_size);
|
||||
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
|
||||
EXPECT_EQ(golden, output);
|
||||
}
|
||||
|
||||
TEST(DepthwiseConv, shape_3_3_4_2_float32_BatchValidTest) {
|
||||
auto ctx = tim::vx::Context::Create();
|
||||
auto graph = ctx->CreateGraph();
|
||||
|
||||
tim::vx::ShapeType input_shape({3, 3, 4, 2}); //whcn
|
||||
tim::vx::ShapeType weight_shape({3, 3, 4, 1}); //whoi
|
||||
tim::vx::ShapeType bias_shape({weight_shape[2]});
|
||||
tim::vx::ShapeType output_shape(
|
||||
{1, 1, weight_shape[2], input_shape[3]}); //whcn
|
||||
|
||||
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, input_shape,
|
||||
tim::vx::TensorAttribute::INPUT);
|
||||
tim::vx::TensorSpec weight_spec(tim::vx::DataType::FLOAT32, weight_shape,
|
||||
tim::vx::TensorAttribute::CONSTANT);
|
||||
tim::vx::TensorSpec bias_spec(tim::vx::DataType::FLOAT32, bias_shape,
|
||||
tim::vx::TensorAttribute::CONSTANT);
|
||||
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, output_shape,
|
||||
tim::vx::TensorAttribute::OUTPUT);
|
||||
|
||||
// Input data nchw
|
||||
std::vector<float> input_data = {
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
|
||||
|
||||
// weight data iohw
|
||||
std::vector<float> weight_data = {1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2,
|
||||
2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3,
|
||||
3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4};
|
||||
|
||||
// bias data
|
||||
std::vector<float> bias_data = {0, 0, 0, 0};
|
||||
|
||||
// nchw
|
||||
std::vector<float> golden = {9, 18, 0, 0, 9, 18, 0, 0};
|
||||
|
||||
auto input_tensor = graph->CreateTensor(input_spec);
|
||||
auto weight_tensor = graph->CreateTensor(weight_spec, weight_data.data());
|
||||
auto bias_tensor = graph->CreateTensor(bias_spec, bias_data.data());
|
||||
|
||||
auto output_tensor = graph->CreateTensor(output_spec);
|
||||
|
||||
auto padding = tim::vx::PadType::VALID;
|
||||
std::array<uint32_t, 2> stride({1, 1});
|
||||
std::array<uint32_t, 2> dilation({1, 1});
|
||||
int32_t multiplier = weight_shape[2] / input_shape[2];
|
||||
|
||||
auto conv2d = graph->CreateOperation<tim::vx::ops::Conv2d>(
|
||||
padding, stride, dilation, multiplier);
|
||||
(*conv2d)
|
||||
.BindInput(input_tensor)
|
||||
.BindInput(weight_tensor)
|
||||
.BindInput(bias_tensor)
|
||||
.BindOutput(output_tensor);
|
||||
|
||||
EXPECT_TRUE(graph->Compile());
|
||||
|
||||
input_tensor->CopyDataToTensor(input_data.data());
|
||||
|
||||
EXPECT_TRUE(graph->Run());
|
||||
|
||||
uint32_t output_size = 1;
|
||||
for (auto i : output_tensor->GetShape()) {
|
||||
output_size *= i;
|
||||
}
|
||||
std::vector<float> output(output_size);
|
||||
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
|
||||
EXPECT_EQ(golden, output);
|
||||
}
|
||||
|
||||
TEST(DepthwiseConv, shape_2_2_1_4_float32_BatchSameTest) {
|
||||
auto ctx = tim::vx::Context::Create();
|
||||
auto graph = ctx->CreateGraph();
|
||||
|
||||
tim::vx::ShapeType input_shape({2, 2, 1, 4}); //whcn
|
||||
tim::vx::ShapeType weight_shape({3, 3, 1, 1}); //whoi
|
||||
tim::vx::ShapeType bias_shape({weight_shape[2]});
|
||||
tim::vx::ShapeType output_shape(
|
||||
{2, 2, weight_shape[2], input_shape[3]}); //whcn
|
||||
|
||||
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, input_shape,
|
||||
tim::vx::TensorAttribute::INPUT);
|
||||
tim::vx::TensorSpec weight_spec(tim::vx::DataType::FLOAT32, weight_shape,
|
||||
tim::vx::TensorAttribute::CONSTANT);
|
||||
tim::vx::TensorSpec bias_spec(tim::vx::DataType::FLOAT32, bias_shape,
|
||||
tim::vx::TensorAttribute::CONSTANT);
|
||||
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, output_shape,
|
||||
tim::vx::TensorAttribute::OUTPUT);
|
||||
|
||||
// Input data nchw
|
||||
std::vector<float> input_data = {1, 1, 1, 1, 0, 0, 0, 0,
|
||||
1, 1, 2, 2, 2, 2, 2, 2};
|
||||
|
||||
// weight data iohw
|
||||
std::vector<float> weight_data = {1, 1, 1, 0, 2, 0, 1, 1, 1};
|
||||
|
||||
// bias data
|
||||
std::vector<float> bias_data = {0};
|
||||
|
||||
// nchw
|
||||
std::vector<float> golden = {4, 4, 4, 4, 0, 0, 0, 0, 6, 6, 6, 6, 8, 8, 8, 8};
|
||||
|
||||
auto input_tensor = graph->CreateTensor(input_spec);
|
||||
auto weight_tensor = graph->CreateTensor(weight_spec, weight_data.data());
|
||||
auto bias_tensor = graph->CreateTensor(bias_spec, bias_data.data());
|
||||
|
||||
auto output_tensor = graph->CreateTensor(output_spec);
|
||||
|
||||
auto padding = tim::vx::PadType::SAME;
|
||||
std::array<uint32_t, 2> stride({1, 1});
|
||||
std::array<uint32_t, 2> dilation({1, 1});
|
||||
int32_t multiplier = weight_shape[2] / input_shape[2];
|
||||
|
||||
auto conv2d = graph->CreateOperation<tim::vx::ops::Conv2d>(
|
||||
padding, stride, dilation, multiplier);
|
||||
(*conv2d)
|
||||
.BindInput(input_tensor)
|
||||
.BindInput(weight_tensor)
|
||||
.BindInput(bias_tensor)
|
||||
.BindOutput(output_tensor);
|
||||
|
||||
EXPECT_TRUE(graph->Compile());
|
||||
|
||||
input_tensor->CopyDataToTensor(input_data.data());
|
||||
|
||||
EXPECT_TRUE(graph->Run());
|
||||
|
||||
uint32_t output_size = 1;
|
||||
for (auto i : output_tensor->GetShape()) {
|
||||
output_size *= i;
|
||||
}
|
||||
std::vector<float> output(output_size);
|
||||
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
|
||||
EXPECT_EQ(golden, output);
|
||||
}
|
||||
Loading…
Reference in New Issue