mapped groupedconv1d & unit test (#233)
Signed-off-by: Chen Xin <jack.chen@verisilicon.com> Co-authored-by: Chen Xin <jack.chen@verisilicon.com>
This commit is contained in:
parent
bd496219c8
commit
dc31091db5
|
|
@ -36,22 +36,22 @@ class Conv1d : public Operation {
|
|||
public:
|
||||
Conv1d(Graph* graph, PadType padding, uint32_t stride,
|
||||
uint32_t dilation, int32_t multiplier = 0,
|
||||
DataLayout input_layout = DataLayout::WHCN,
|
||||
DataLayout kernel_layout = DataLayout::WHIcOc);
|
||||
DataLayout input_layout = DataLayout::WCN,
|
||||
DataLayout kernel_layout = DataLayout::WIcOc);
|
||||
Conv1d(Graph* graph, const std::array<uint32_t, 2>& pad,
|
||||
uint32_t stride, uint32_t dilation, int32_t multiplier = 0,
|
||||
DataLayout input_layout = DataLayout::WHCN,
|
||||
DataLayout kernel_layout = DataLayout::WHIcOc);
|
||||
DataLayout input_layout = DataLayout::WCN,
|
||||
DataLayout kernel_layout = DataLayout::WIcOc);
|
||||
Conv1d(Graph* graph, int32_t weights, PadType padding,
|
||||
uint32_t ksize, uint32_t stride,
|
||||
uint32_t dilation, int32_t multiplier = 0,
|
||||
DataLayout input_layout = DataLayout::WHCN,
|
||||
DataLayout kernel_layout = DataLayout::WHIcOc);
|
||||
DataLayout input_layout = DataLayout::WCN,
|
||||
DataLayout kernel_layout = DataLayout::WIcOc);
|
||||
Conv1d(Graph* graph, int32_t weights, PadType padding,
|
||||
uint32_t ksize, uint32_t stride, uint32_t dilation,
|
||||
const std::array<uint32_t, 2>& pad, int32_t multiplier = 0,
|
||||
DataLayout input_layout = DataLayout::WHCN,
|
||||
DataLayout kernel_layout = DataLayout::WHIcOc);
|
||||
DataLayout input_layout = DataLayout::WCN,
|
||||
DataLayout kernel_layout = DataLayout::WIcOc);
|
||||
|
||||
DataLayout KernelDataLayout() { return kernel_layout_; }
|
||||
|
||||
|
|
|
|||
|
|
@ -0,0 +1,82 @@
|
|||
/****************************************************************************
|
||||
*
|
||||
* Copyright (c) 2021 Vivante Corporation
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a
|
||||
* copy of this software and associated documentation files (the "Software"),
|
||||
* to deal in the Software without restriction, including without limitation
|
||||
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||||
* and/or sell copies of the Software, and to permit persons to whom the
|
||||
* Software is furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in
|
||||
* all copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||||
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
||||
* DEALINGS IN THE SOFTWARE.
|
||||
*
|
||||
*****************************************************************************/
|
||||
#ifndef TIM_VX_OPS_GROUPEDCONV1D_H_
|
||||
#define TIM_VX_OPS_GROUPEDCONV1D_H_
|
||||
|
||||
#include <array>
|
||||
|
||||
#include "tim/vx/operation.h"
|
||||
|
||||
namespace tim {
|
||||
namespace vx {
|
||||
namespace ops {
|
||||
|
||||
/**
|
||||
* ## GroupedConv1d
|
||||
*
|
||||
* Performs a grouped 1-D convolution operation.
|
||||
*
|
||||
* Input:
|
||||
* - input [WCN].
|
||||
* - kernel [ WIcOc ] (Ic: Input Channels. Oc: Output Channels).Ic*group=C.
|
||||
* - bias [ O ]. Optional.
|
||||
*
|
||||
* Attribute:
|
||||
* - weights : the output channel number for weight tensor.
|
||||
* - ksize : the height and width for weight tensor.
|
||||
* - padding : AUTO, VALID or SAME.
|
||||
* - pad : pad value for each spatial axis.
|
||||
* - stride : stride along each spatial axis.
|
||||
* - dilation : dilation value along each spatial axis of the filter.
|
||||
* - group: Split conv to n group.
|
||||
* - layout : WCN or CWN.
|
||||
*/
|
||||
|
||||
class GroupedConv1d : public Operation {
|
||||
public:
|
||||
GroupedConv1d(Graph* graph, PadType padding,
|
||||
uint32_t stride,
|
||||
uint32_t dilation,
|
||||
uint32_t group,
|
||||
DataLayout input_layout = DataLayout::WCN,
|
||||
DataLayout kernel_layout = DataLayout::WIcOc);
|
||||
|
||||
DataLayout KernelDataLayout() { return kernel_layout_; }
|
||||
|
||||
std::shared_ptr<Operation> Clone(std::shared_ptr<Graph>& graph) const override;
|
||||
|
||||
protected:
|
||||
const PadType padding_;
|
||||
const uint32_t stride_;
|
||||
const uint32_t dilation_;
|
||||
const std::array<uint32_t, 2> pad_;
|
||||
const uint32_t group_;
|
||||
const DataLayout kernel_layout_;
|
||||
};
|
||||
|
||||
} // namespace ops
|
||||
} // namespace vx
|
||||
} // namespace tim
|
||||
|
||||
#endif /* TIM_VX_OPS_GROUPED_CONV1D_H_ */
|
||||
|
|
@ -69,7 +69,9 @@ enum class DataLayout {
|
|||
IcWHOc, /*TF*/
|
||||
OcIcWH, /*TVM for classic conv2d in tflite model*/
|
||||
IcOcWH, /*TVM for depthwise conv2d in tflite model*/
|
||||
WHIcOc /*TIM-VX default*/
|
||||
WHIcOc, /*TIM-VX default*/
|
||||
WCN, /*for conv1d*/
|
||||
WIcOc, /*for conv1d*/
|
||||
};
|
||||
|
||||
} // namespace vx
|
||||
|
|
|
|||
|
|
@ -101,6 +101,7 @@ shuffle_channel|SHUFFLECHANNEL|Mapped|[ANEURALNETWORKS_CHANNEL_SHUFFLE](https://
|
|||
Gelu|GELU|Mapped|[tf.nn.gelu](https://tensorflow.google.cn/api_docs/python/tf/nn/gelu)
|
||||
Svdf|SVDF|Mapped|[ANEURALNETWORKS_SVDF](https://developer.android.com/ndk/reference/group/neural-networks#group___neural_networks_1ggaabbe492c60331b13038e39d4207940e0a7096de21038c1ce49d354a00cba7b552)
|
||||
Erf|ERF|Mapped|[tf.math.erf](https://tensorflow.google.cn/api_docs/python/tf/math/erf)
|
||||
GROUPED_CONV1D|Mapped|[tf.keras.layers.Conv1D](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Conv1D)
|
||||
||PROPOSAL| TBD |[Faster-RCNN Proposal Layer](https://github.com/intel/caffe/blob/master/examples/faster-rcnn/lib/rpn/proposal_layer.py)
|
||||
||ROI_POOL|Planned 22Q1 |[ANEURALNETWORKS_ROI_POOLING](https://developer.android.com/ndk/reference/group/neural-networks#group___neural_networks_1ggaabbe492c60331b13038e39d4207940e0a6736198af337b2efbdb0b6b64dee7fe4)
|
||||
||ROI_ALIGN| TBD |[ANEURALNETWORKS_ROI_ALIGN](https://developer.android.com/ndk/reference/group/neural-networks#group___neural_networks_1ggaabbe492c60331b13038e39d4207940e0a2848b39dd4bfba78f2438fda0d9397a4)
|
||||
|
|
|
|||
|
|
@ -27,18 +27,19 @@
|
|||
#include "test_utils.h"
|
||||
#include "gtest/gtest.h"
|
||||
|
||||
TEST(Conv1d, shape_3_6_1_float_ksize_1_stride_1_weights_3_no_bias_whcn) {
|
||||
TEST(Conv1d, shape_3_6_1_float_ksize_1_stride_1_weights_3_no_bias_wcn) {
|
||||
auto ctx = tim::vx::Context::Create();
|
||||
auto graph = ctx->CreateGraph();
|
||||
|
||||
tim::vx::ShapeType io_shape({3, 6, 1});
|
||||
tim::vx::ShapeType in_shape({3, 6, 1});
|
||||
tim::vx::ShapeType param_shape({1,6,3});
|
||||
tim::vx::ShapeType out_shape({3, 3, 1});
|
||||
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32,
|
||||
io_shape, tim::vx::TensorAttribute::INPUT);
|
||||
in_shape, tim::vx::TensorAttribute::INPUT);
|
||||
tim::vx::TensorSpec param_spec(tim::vx::DataType::FLOAT32,
|
||||
param_shape, tim::vx::TensorAttribute::INPUT);
|
||||
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32,
|
||||
io_shape, tim::vx::TensorAttribute::OUTPUT);
|
||||
out_shape, tim::vx::TensorAttribute::OUTPUT);
|
||||
|
||||
auto input_tensor = graph->CreateTensor(input_spec);
|
||||
auto weight_tensor = graph->CreateTensor(param_spec);
|
||||
|
|
@ -78,7 +79,7 @@ TEST(Conv1d, shape_3_6_1_float_ksize_1_stride_1_weights_3_no_bias_whcn) {
|
|||
EXPECT_TRUE(ArraysMatch(golden, output, 1e-5f));
|
||||
}
|
||||
|
||||
TEST(Conv1d, shape_6_2_1_uint8_ksize_6_stride_1_weights_2_whcn) {
|
||||
TEST(Conv1d, shape_6_2_1_uint8_ksize_6_stride_1_weights_2_wcn) {
|
||||
auto ctx = tim::vx::Context::Create();
|
||||
auto graph = ctx->CreateGraph();
|
||||
|
||||
|
|
@ -144,7 +145,7 @@ TEST(Conv1d, shape_6_2_1_uint8_ksize_6_stride_1_weights_2_whcn) {
|
|||
EXPECT_TRUE(ArraysMatch(golden, output, static_cast<uint8_t>(0)));
|
||||
}
|
||||
|
||||
TEST(Conv1d, shape_6_2_1_uint8_ksize_3_stride_1_pad_1_weights_2_no_bias_whcn) {
|
||||
TEST(Conv1d, shape_6_2_1_uint8_ksize_3_stride_1_pad_1_weights_2_no_bias_wcn) {
|
||||
auto ctx = tim::vx::Context::Create();
|
||||
auto graph = ctx->CreateGraph();
|
||||
|
||||
|
|
@ -199,7 +200,7 @@ TEST(Conv1d, shape_6_2_1_uint8_ksize_3_stride_1_pad_1_weights_2_no_bias_whcn) {
|
|||
#if 0
|
||||
// Fail case
|
||||
// Internal impl conv1d don't support multiplier, need wait for the fix.
|
||||
TEST(Conv1d, shape_7_2_1_uint8_ksize_3_stride_2_multiplier_1_whcn) {
|
||||
TEST(Conv1d, shape_7_2_1_uint8_ksize_3_stride_2_multiplier_1_wcn) {
|
||||
auto ctx = tim::vx::Context::Create();
|
||||
auto graph = ctx->CreateGraph();
|
||||
|
||||
|
|
|
|||
|
|
@ -0,0 +1,59 @@
|
|||
/****************************************************************************
|
||||
*
|
||||
* Copyright (c) 2021 Vivante Corporation
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a
|
||||
* copy of this software and associated documentation files (the "Software"),
|
||||
* to deal in the Software without restriction, including without limitation
|
||||
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||||
* and/or sell copies of the Software, and to permit persons to whom the
|
||||
* Software is furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in
|
||||
* all copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||||
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
||||
* DEALINGS IN THE SOFTWARE.
|
||||
*
|
||||
*****************************************************************************/
|
||||
#include "tim/vx/ops/groupedconv1d.h"
|
||||
|
||||
#include "operation_private.h"
|
||||
#include "type_utils.h"
|
||||
#include "vsi_nn_pub.h"
|
||||
|
||||
namespace tim {
|
||||
namespace vx {
|
||||
namespace ops {
|
||||
|
||||
GroupedConv1d::GroupedConv1d(Graph* graph,
|
||||
PadType padding,
|
||||
const uint32_t stride,
|
||||
const uint32_t dilation,
|
||||
uint32_t group,
|
||||
DataLayout input_layout, DataLayout kernel_layout)
|
||||
: Operation(graph, VSI_NN_OP_GROUPED_CONV1D, 3, 1, input_layout),
|
||||
padding_(padding), stride_(stride), dilation_(dilation),
|
||||
pad_({0,0}), group_(group),
|
||||
kernel_layout_(kernel_layout) {
|
||||
this->impl()->node()->nn_param.grouped_conv1d.pad_type = TranslatePadType(padding_);
|
||||
this->impl()->node()->nn_param.grouped_conv1d.stride = stride_;
|
||||
this->impl()->node()->nn_param.grouped_conv1d.group = group_;
|
||||
this->impl()->node()->nn_param.grouped_conv1d.dilation = dilation_;
|
||||
}
|
||||
|
||||
std::shared_ptr<Operation> GroupedConv1d::Clone(
|
||||
std::shared_ptr<Graph>& graph) const {
|
||||
return graph->CreateOperation<GroupedConv1d>(
|
||||
this->padding_, this->stride_, this->dilation_, this->group_, this->impl_->layout_,
|
||||
this->kernel_layout_);
|
||||
}
|
||||
|
||||
} // namespace ops
|
||||
} // namespace vx
|
||||
} // namespace tim
|
||||
|
|
@ -0,0 +1,72 @@
|
|||
/****************************************************************************
|
||||
*
|
||||
* Copyright (c) 2021 Vivante Corporation
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a
|
||||
* copy of this software and associated documentation files (the "Software"),
|
||||
* to deal in the Software without restriction, including without limitation
|
||||
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||||
* and/or sell copies of the Software, and to permit persons to whom the
|
||||
* Software is furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in
|
||||
* all copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||||
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
||||
* DEALINGS IN THE SOFTWARE.
|
||||
*
|
||||
*****************************************************************************/
|
||||
#include "tim/vx/context.h"
|
||||
#include "tim/vx/graph.h"
|
||||
#include "tim/vx/ops/groupedconv1d.h"
|
||||
#include "test_utils.h"
|
||||
#include "gtest/gtest.h"
|
||||
|
||||
TEST(GroupedConv1d, shape_6_2_1_float_ksize_6_stride_1_group_2_no_bias_wcn) {
|
||||
auto ctx = tim::vx::Context::Create();
|
||||
auto graph = ctx->CreateGraph();
|
||||
|
||||
tim::vx::ShapeType in_shape({6, 2, 1});
|
||||
tim::vx::ShapeType param_shape({6, 1, 2});
|
||||
tim::vx::ShapeType out_shape({1, 2, 1});
|
||||
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32,
|
||||
in_shape, tim::vx::TensorAttribute::INPUT);
|
||||
tim::vx::TensorSpec param_spec(tim::vx::DataType::FLOAT32,
|
||||
param_shape, tim::vx::TensorAttribute::INPUT);
|
||||
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32,
|
||||
out_shape, tim::vx::TensorAttribute::OUTPUT);
|
||||
|
||||
auto input_tensor = graph->CreateTensor(input_spec);
|
||||
auto weight_tensor = graph->CreateTensor(param_spec);
|
||||
auto output_tensor = graph->CreateTensor(output_spec);
|
||||
|
||||
std::vector<float> in_data = {
|
||||
-1, 0, 1, -1.5, 0.5, 1.5,
|
||||
-2, -0.5, 2, -2.5, 0, 2.5,
|
||||
};
|
||||
std::vector<float> weight = {
|
||||
-3, -2, -1.5, 1.5, 2, 3,
|
||||
-2.5, -2, -1.5, 1.5, 2, 2.5,
|
||||
};
|
||||
std::vector<float> golden = {
|
||||
4.75, 5.5,
|
||||
};
|
||||
|
||||
EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(), in_data.size() * sizeof(float)));
|
||||
EXPECT_TRUE(weight_tensor->CopyDataToTensor(weight.data(), weight.size() * sizeof(float)));
|
||||
|
||||
auto op = graph->CreateOperation<tim::vx::ops::GroupedConv1d>(tim::vx::PadType::VALID, 1, 1, 2);
|
||||
(*op).BindInputs({input_tensor, weight_tensor}).BindOutputs({output_tensor});
|
||||
|
||||
EXPECT_TRUE(graph->Compile());
|
||||
EXPECT_TRUE(graph->Run());
|
||||
|
||||
std::vector<float> output(golden.size());
|
||||
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
|
||||
EXPECT_TRUE(ArraysMatch(golden, output, 1e-5f));
|
||||
}
|
||||
|
|
@ -58,15 +58,15 @@ GroupedConv2d::GroupedConv2d(Graph* graph,
|
|||
: Operation(graph, VSI_NN_OP_GROUPED_CONV2D, 3, 1, input_layout),
|
||||
padding_(PadType::AUTO), strides_(strides), dilation_(dilation), pad_(pad),
|
||||
group_number_(group_number), kernel_layout_(kernel_layout) {
|
||||
this->impl()->node()->nn_param.conv2d.stride[0] = strides_[0];
|
||||
this->impl()->node()->nn_param.conv2d.stride[1] = strides_[1];
|
||||
this->impl()->node()->nn_param.conv2d.group = group_number_;
|
||||
this->impl()->node()->nn_param.conv2d.dilation[0] = dilation_[0];
|
||||
this->impl()->node()->nn_param.conv2d.dilation[1] = dilation_[1];
|
||||
this->impl()->node()->nn_param.conv2d.pad[0] = pad_[0];
|
||||
this->impl()->node()->nn_param.conv2d.pad[1] = pad_[1];
|
||||
this->impl()->node()->nn_param.conv2d.pad[2] = pad_[2];
|
||||
this->impl()->node()->nn_param.conv2d.pad[3] = pad_[3];
|
||||
this->impl()->node()->nn_param.grouped_conv2d.stride[0] = strides_[0];
|
||||
this->impl()->node()->nn_param.grouped_conv2d.stride[1] = strides_[1];
|
||||
this->impl()->node()->nn_param.grouped_conv2d.group = group_number_;
|
||||
this->impl()->node()->nn_param.grouped_conv2d.dilation[0] = dilation_[0];
|
||||
this->impl()->node()->nn_param.grouped_conv2d.dilation[1] = dilation_[1];
|
||||
this->impl()->node()->nn_param.grouped_conv2d.pad[0] = pad_[0];
|
||||
this->impl()->node()->nn_param.grouped_conv2d.pad[1] = pad_[1];
|
||||
this->impl()->node()->nn_param.grouped_conv2d.pad[2] = pad_[2];
|
||||
this->impl()->node()->nn_param.grouped_conv2d.pad[3] = pad_[3];
|
||||
}
|
||||
|
||||
std::shared_ptr<Operation> GroupedConv2d::Clone(
|
||||
|
|
|
|||
Loading…
Reference in New Issue