Add unidirectional sequence lstm support
Signed-off-by: xiang.zhang <xiang.zhang@verisilicon.com>
This commit is contained in:
parent
d4a13e18a9
commit
e27e15925c
|
|
@ -335,3 +335,4 @@ ASALocalRun/
|
|||
|
||||
# IDE
|
||||
.settings/
|
||||
build/
|
||||
|
|
|
|||
|
|
@ -48,6 +48,7 @@ class Operation {
|
|||
RoundType down_scale_size_rounding = RoundType::FLOOR,
|
||||
uint32_t accumulator_bits = 0);
|
||||
std::unique_ptr<OperationImpl>& impl();
|
||||
const std::unique_ptr<OperationImpl>& impl() const;
|
||||
|
||||
protected:
|
||||
std::unique_ptr<OperationImpl> impl_;
|
||||
|
|
|
|||
|
|
@ -0,0 +1,65 @@
|
|||
/****************************************************************************
|
||||
*
|
||||
* Copyright (c) 2020 Vivante Corporation
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a
|
||||
* copy of this software and associated documentation files (the "Software"),
|
||||
* to deal in the Software without restriction, including without limitation
|
||||
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||||
* and/or sell copies of the Software, and to permit persons to whom the
|
||||
* Software is furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in
|
||||
* all copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||||
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
||||
* DEALINGS IN THE SOFTWARE.
|
||||
*
|
||||
*****************************************************************************/
|
||||
#ifndef TIM_VX_OPS_UNIDIRECTIONAL_SEQUENCE_LSTM_H_
|
||||
#define TIM_VX_OPS_UNIDIRECTIONAL_SEQUENCE_LSTM_H_
|
||||
#include "tim/vx/operation.h"
|
||||
|
||||
namespace tim {
|
||||
namespace vx {
|
||||
namespace ops {
|
||||
/**
|
||||
* ## Unidirectional sequence lstm
|
||||
* how to bind input/output: take unidirectional_sequence_lstm_test.cc
|
||||
*/
|
||||
class UnidirectionalSequenceLstm: public Operation {
|
||||
public:
|
||||
enum ActivationType {
|
||||
kNONE = 0,
|
||||
kRELU = 1,
|
||||
kRELU6 = 2,
|
||||
kTANH = 3,
|
||||
kSIGMOID = 4,
|
||||
kHARDSIGMOID = 5,
|
||||
kCOUNT
|
||||
};
|
||||
|
||||
UnidirectionalSequenceLstm(
|
||||
Graph* graph, float cell_clip, float proj_clip,
|
||||
ActivationType act_type, float forget_bias, bool time_major = false,
|
||||
ActivationType recurrent_act_type = ActivationType::kNONE,
|
||||
bool return_sequences = false /*False: only return last state*/
|
||||
);
|
||||
|
||||
std::shared_ptr<Operation> Clone(
|
||||
std::shared_ptr<Graph>& graph) const override;
|
||||
|
||||
protected:
|
||||
ActivationType act_type_;
|
||||
ActivationType recurrent_act_type_;
|
||||
};
|
||||
}
|
||||
} // namespace vx
|
||||
} // namespace tim
|
||||
|
||||
#endif
|
||||
|
|
@ -90,6 +90,7 @@ Operation::Operation(Graph* graph, uint32_t operation_id,
|
|||
Operation::~Operation() {}
|
||||
|
||||
std::unique_ptr<OperationImpl>& Operation::impl() { return impl_; }
|
||||
const std::unique_ptr<OperationImpl>& Operation::impl() const { return impl_; }
|
||||
|
||||
Operation& Operation::BindInput(const std::shared_ptr<Tensor>& tensor) {
|
||||
impl_->BindInput(tensor);
|
||||
|
|
|
|||
|
|
@ -108,8 +108,8 @@ SpatialTransformer|SPATIAL_TRANSFORMER|Mapped|[SpatialTransformer](https://githu
|
|||
|BidirectionalSequenceRNN|BIDIRECTIONAL_SEQUENCE_RNN|Planned 21Q4|[ANEURALNETWORKS_BIDIRECTIONAL_SEQUENCE_RNN](https://developer.android.com/ndk/reference/group/neural-networks#group___neural_networks_1ggaabbe492c60331b13038e39d4207940e0a487fc5ae247de828f13e62b99f259f3c)
|
||||
|RNNCell|RNNCELL_OVXLIB|Planned 21Q3|[ANEURALNETWORKS_RNN](https://developer.android.com/ndk/reference/group/neural-networks#group___neural_networks_1ggaabbe492c60331b13038e39d4207940e0acd2684ac9c73bb29767b534e78a332e8)
|
||||
|BidirectionalSequenceLSTM|BIDIRECTIONAL_SEQUENCE_LSTM|Planned 21Q4|[ANEURALNETWORKS_BIDIRECTIONAL_SEQUENCE_LSTM](https://developer.android.com/ndk/reference/group/neural-networks#group___neural_networks_1ggaabbe492c60331b13038e39d4207940e0a492a71cb7aa50b9a1a834a3cb269d778)
|
||||
|UnidirectionalSequenceLSTM|LSTM_OVXLIB|Planned 21Q4|[ANEURALNETWORKS_UNIDIRECTIONAL_SEQUENCE_LSTM](https://developer.android.com/ndk/reference/group/neural-networks#group___neural_networks_1ggaabbe492c60331b13038e39d4207940e0aaf30e491ad0b1fc7602cbde695b2c859)
|
||||
|LSTMCell|LSTMUNIT_OVXLIB|Planned 21Q3|[ANEURALNETWORKS_LSTM](https://developer.android.com/ndk/reference/group/neural-networks#group___neural_networks_1ggaabbe492c60331b13038e39d4207940e0ad0377e8c305e596fb7f64ff896671fc5)
|
||||
|UnidirectionalSequenceLSTM|LSTM_OVXLIB|Mapped|[ANEURALNETWORKS_UNIDIRECTIONAL_SEQUENCE_LSTM](https://developer.android.com/ndk/reference/group/neural-networks#group___neural_networks_1ggaabbe492c60331b13038e39d4207940e0aaf30e491ad0b1fc7602cbde695b2c859)
|
||||
|LSTMCell|LSTMUNIT_OVXLIB|replace with UnidirectionalSequenceLSTM by set n_step = 1 |[ANEURALNETWORKS_LSTM](https://developer.android.com/ndk/reference/group/neural-networks#group___neural_networks_1ggaabbe492c60331b13038e39d4207940e0ad0377e8c305e596fb7f64ff896671fc5)
|
||||
||PRE_PROCESS|Planned 21Q4|Image Preprocessing (YUV2RGB, Input Normalization, Resizing, etc)
|
||||
||HASHTABLE_LOOKUP|Planned 21Q4|[ANEURALNETWORKS_HASHTABLE_LOOKUP](https://developer.android.com/ndk/reference/group/neural-networks#group___neural_networks_1ggaabbe492c60331b13038e39d4207940e0aca92716c8c73c1f0fa7f0757916fee26)
|
||||
||EMBEDDING_LOOKUP|Planned 21Q4|[ANEURALNETWORKS_EMBEDDING_LOOKUP](developer.android.com/ndk/reference/group/neural-networks#group___neural_networks_1ggaabbe492c60331b13038e39d4207940e0a8d2ada77adb74357fc0770405bca0e3)
|
||||
|
|
|
|||
|
|
@ -0,0 +1,86 @@
|
|||
/****************************************************************************
|
||||
*
|
||||
* Copyright (c) 2020 Vivante Corporation
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a
|
||||
* copy of this software and associated documentation files (the "Software"),
|
||||
* to deal in the Software without restriction, including without limitation
|
||||
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||||
* and/or sell copies of the Software, and to permit persons to whom the
|
||||
* Software is furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in
|
||||
* all copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||||
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
||||
* DEALINGS IN THE SOFTWARE.
|
||||
*
|
||||
*****************************************************************************/
|
||||
#include "tim/vx/ops/unidirectional_sequence_lstm.h"
|
||||
|
||||
#include "operation_private.h"
|
||||
#include "vsi_nn_pub.h"
|
||||
|
||||
namespace tim {
|
||||
namespace vx {
|
||||
namespace ops {
|
||||
|
||||
vsi_nn_activation_e downcast_act_type(UnidirectionalSequenceLstm::ActivationType act) {
|
||||
switch (act) {
|
||||
case UnidirectionalSequenceLstm::ActivationType::kRELU:
|
||||
return VSI_NN_LSTMUNIT_ACT_RELU;
|
||||
case UnidirectionalSequenceLstm::ActivationType::kRELU6:
|
||||
return VSI_NN_LSTMUNIT_ACT_RELU6;
|
||||
case UnidirectionalSequenceLstm::ActivationType::kTANH:
|
||||
return VSI_NN_LSTMUNIT_ACT_TANH;
|
||||
case UnidirectionalSequenceLstm::ActivationType::kSIGMOID:
|
||||
return VSI_NN_LSTMUNIT_ACT_SIGMOID;
|
||||
case UnidirectionalSequenceLstm::ActivationType::kHARDSIGMOID:
|
||||
return VSI_NN_LSTMUNIT_ACT_HARD_SIGMOID;
|
||||
default: {
|
||||
VSILOGW("Not supported activition type for LSTM = %d", static_cast<int32_t>(act));
|
||||
return VSI_NN_ACT_NONE;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
UnidirectionalSequenceLstm::UnidirectionalSequenceLstm(
|
||||
Graph* graph, float cell_clip, float proj_clip, ActivationType act_type,
|
||||
float forget_bias, bool time_major, ActivationType recurrent_act_type,
|
||||
bool return_sequences)
|
||||
: Operation(graph, VSI_NN_OP_LSTM_OVXLIB, LSTM_INPUT_CNT, LSTM_OUTPUT_CNT),
|
||||
act_type_(act_type),
|
||||
recurrent_act_type_(recurrent_act_type) {
|
||||
this->impl()->node()->nn_param.lstm_ovxlib.cell_clip = cell_clip;
|
||||
this->impl()->node()->nn_param.lstm_ovxlib.proj_clip = proj_clip;
|
||||
this->impl()->node()->nn_param.lstm_ovxlib.time_major = time_major;
|
||||
this->impl()->node()->nn_param.lstm_ovxlib.activation =
|
||||
downcast_act_type(act_type);
|
||||
this->impl()->node()->nn_param.lstm_ovxlib.forget_bias = forget_bias;
|
||||
this->impl()->node()->nn_param.lstm_ovxlib.recurrent_activation =
|
||||
downcast_act_type(recurrent_act_type);
|
||||
this->impl()->node()->nn_param.lstm_ovxlib.return_sequences =
|
||||
return_sequences;
|
||||
}
|
||||
|
||||
std::shared_ptr<Operation> UnidirectionalSequenceLstm::Clone(std::shared_ptr<Graph>& graph) const {
|
||||
auto cloned_op =
|
||||
graph->CreateOperation<tim::vx::ops::UnidirectionalSequenceLstm>(
|
||||
this->impl()->node()->nn_param.lstm_ovxlib.cell_clip,
|
||||
this->impl()->node()->nn_param.lstm_ovxlib.proj_clip,
|
||||
act_type_,
|
||||
this->impl()->node()->nn_param.lstm_ovxlib.forget_bias,
|
||||
this->impl()->node()->nn_param.lstm_ovxlib.time_major,
|
||||
recurrent_act_type_,
|
||||
this->impl()->node()->nn_param.lstm_ovxlib.return_sequences);
|
||||
return cloned_op;
|
||||
}
|
||||
|
||||
}
|
||||
} // namespace vx
|
||||
} // namespace tim
|
||||
|
|
@ -0,0 +1,209 @@
|
|||
/****************************************************************************
|
||||
*
|
||||
* Copyright (c) 2021 Vivante Corporation
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a
|
||||
* copy of this software and associated documentation files (the "Software"),
|
||||
* to deal in the Software without restriction, including without limitation
|
||||
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||||
* and/or sell copies of the Software, and to permit persons to whom the
|
||||
* Software is furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in
|
||||
* all copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||||
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
||||
* DEALINGS IN THE SOFTWARE.
|
||||
*
|
||||
*****************************************************************************/
|
||||
#include "tim/vx/context.h"
|
||||
#include "tim/vx/graph.h"
|
||||
#include "tim/vx/ops/unidirectional_sequence_lstm.h"
|
||||
|
||||
#include "gtest/gtest.h"
|
||||
|
||||
std::shared_ptr<tim::vx::Tensor> make_empty_tensor(
|
||||
std::shared_ptr<tim::vx::Graph> graph, const tim::vx::ShapeType& shape,
|
||||
const tim::vx::TensorAttribute& role) //, const float& default_value) {
|
||||
{
|
||||
tim::vx::TensorSpec spec(tim::vx::DataType::FLOAT32, shape, role);
|
||||
auto tensor = graph->CreateTensor(spec);
|
||||
|
||||
uint32_t count = 1;
|
||||
for (auto dim : shape) {count *= dim;}
|
||||
|
||||
std::vector<float> default_value(count);
|
||||
for(auto& i: default_value) {
|
||||
i = 0.f;
|
||||
}
|
||||
|
||||
tensor->CopyDataToTensor(default_value.data(), count*sizeof(float));
|
||||
|
||||
return tensor;
|
||||
}
|
||||
|
||||
TEST(LSTM_CELL, shape_in_2_cell_4_out_4_float32) {
|
||||
// NoCifg_NoPeephole_NoProjection_NoLayerNorm
|
||||
auto ctx = tim::vx::Context::Create();
|
||||
auto g = ctx->CreateGraph();
|
||||
|
||||
uint32_t n_batch, n_step, n_cell, n_input, n_output;
|
||||
n_batch = 1, n_step = 1, n_cell = 4, n_input = 2, n_output = 4;
|
||||
tim::vx::ShapeType input_shape, cell_shape, state_shape;
|
||||
input_shape = {n_batch, n_step, n_input}; // non-time-major
|
||||
|
||||
tim::vx::TensorSpec input_tensor_spec(tim::vx::DataType::FLOAT32, tim::vx::ShapeType({n_input, n_step, n_batch}), tim::vx::TensorAttribute::INPUT);
|
||||
|
||||
tim::vx::TensorSpec i2i_weight_spec(tim::vx::DataType::FLOAT32, tim::vx::ShapeType({n_input, n_cell}), tim::vx::TensorAttribute::CONSTANT);
|
||||
tim::vx::TensorSpec i2i_bias_spec (tim::vx::DataType::FLOAT32, tim::vx::ShapeType({n_cell}), tim::vx::TensorAttribute::CONSTANT);
|
||||
tim::vx::TensorSpec i2c_weight_spec(tim::vx::DataType::FLOAT32, tim::vx::ShapeType({n_input, n_cell}), tim::vx::TensorAttribute::CONSTANT);
|
||||
tim::vx::TensorSpec i2c_bias_spec (tim::vx::DataType::FLOAT32, tim::vx::ShapeType({n_cell}), tim::vx::TensorAttribute::CONSTANT);
|
||||
tim::vx::TensorSpec i2f_weight_spec(tim::vx::DataType::FLOAT32, tim::vx::ShapeType({n_input, n_cell}), tim::vx::TensorAttribute::CONSTANT);
|
||||
tim::vx::TensorSpec i2f_bias_spec (tim::vx::DataType::FLOAT32, tim::vx::ShapeType({n_cell}), tim::vx::TensorAttribute::CONSTANT);
|
||||
tim::vx::TensorSpec i2o_weight_spec(tim::vx::DataType::FLOAT32, tim::vx::ShapeType({n_input, n_cell}), tim::vx::TensorAttribute::CONSTANT);
|
||||
tim::vx::TensorSpec i2o_bias_spec (tim::vx::DataType::FLOAT32, tim::vx::ShapeType({n_cell}), tim::vx::TensorAttribute::CONSTANT);
|
||||
|
||||
tim::vx::TensorSpec output_spec (tim::vx::DataType::FLOAT32, tim::vx::ShapeType({n_output, n_step, n_batch}), tim::vx::TensorAttribute::OUTPUT);
|
||||
// tim::vx::TensorSpec hstate_spec (tim::vx::DataType::FLOAT32, tim::vx::ShapeType({n_batch, n_output}), tim::vx::TensorAttribute::OUTPUT);
|
||||
// tim::vx::TensorSpec cstate_spec (tim::vx::DataType::FLOAT32, tim::vx::ShapeType({n_batch, n_cell}), tim::vx::TensorAttribute::OUTPUT);
|
||||
auto output_tensor = g->CreateTensor(output_spec);
|
||||
|
||||
std::vector<float> input2input_weights, input2cell_weights, input2forget_weights, input2output_weights;
|
||||
// tim::vx::Tensor input2input_weights_tensor, input2cell_weights_tensor, input2forget_weights_tensor, input2output_weights_tensor;
|
||||
|
||||
input2input_weights = {-0.45018822, -0.02338299, -0.0870589, -0.34550029,
|
||||
0.04266912, -0.15680569, -0.34856534, 0.43890524};
|
||||
std::vector<float> input_gate_bias = {0.0, 0.0, 0.0, 0.0};
|
||||
auto input2input_weights_tensor = g->CreateTensor(i2i_weight_spec, input2input_weights.data());
|
||||
auto input_gate_bias_tensor = g->CreateTensor(i2i_bias_spec, input_gate_bias.data());
|
||||
|
||||
input2cell_weights = {-0.50013041, 0.1370284, 0.11810488, 0.2013163,
|
||||
-0.20583314, 0.44344562, 0.22077113, -0.29909778};
|
||||
std::vector<float> cell_gate_bias = {0.0, 0.0, 0.0, 0.0};
|
||||
auto cell_gate_bias_tensor = g->CreateTensor(i2c_bias_spec, cell_gate_bias.data());
|
||||
auto input2cell_weights_tensor = g->CreateTensor(i2c_weight_spec, input2cell_weights.data());
|
||||
|
||||
input2forget_weights = {0.09701663, 0.20334584, -0.50592935,
|
||||
-0.31343272, -0.40032279, 0.44781327,
|
||||
0.01387155, -0.35593212};
|
||||
std::vector<float> forget_gate_bias = {1., 1., 1., 1.};
|
||||
auto input2forget_weights_tensor = g->CreateTensor(i2f_weight_spec, input2forget_weights.data());
|
||||
auto forget_gate_bias_tensor = g->CreateTensor(i2f_bias_spec, forget_gate_bias.data());
|
||||
|
||||
input2output_weights = {-0.25065863, -0.28290087, 0.04613829, 0.40525138,
|
||||
0.44272184, 0.03897077, -0.1556896, 0.19487578};
|
||||
std::vector<float> output_gate_bias = {0.0, 0.0, 0.0, 0.0};
|
||||
auto input2output_weights_tensor = g->CreateTensor(i2o_weight_spec, input2output_weights.data());
|
||||
auto output_gate_bias_tensor = g->CreateTensor(i2o_bias_spec, output_gate_bias.data());
|
||||
|
||||
tim::vx::TensorSpec r2i_weight_spec(tim::vx::DataType::FLOAT32, tim::vx::ShapeType({n_output, n_cell}), tim::vx::TensorAttribute::CONSTANT);
|
||||
tim::vx::TensorSpec r2c_weight_spec(tim::vx::DataType::FLOAT32, tim::vx::ShapeType({n_output, n_cell}), tim::vx::TensorAttribute::CONSTANT);
|
||||
tim::vx::TensorSpec r2f_weight_spec(tim::vx::DataType::FLOAT32, tim::vx::ShapeType({n_output, n_cell}), tim::vx::TensorAttribute::CONSTANT);
|
||||
tim::vx::TensorSpec r2o_weight_spec(tim::vx::DataType::FLOAT32, tim::vx::ShapeType({n_output, n_cell}), tim::vx::TensorAttribute::CONSTANT);
|
||||
std::vector<float> recurrent_to_input_weights = {
|
||||
-0.0063535, -0.2042388, 0.31454784, -0.35746509,
|
||||
0.28902304, 0.08183324, -0.16555229, 0.02286911,
|
||||
-0.13566875, 0.03034258, 0.48091322, -0.12528998,
|
||||
0.24077177, -0.51332325, -0.33502164, 0.10629296};
|
||||
|
||||
std::vector<float> recurrent_to_cell_weights = {
|
||||
-0.3407414, 0.24443203, -0.2078532, 0.26320225,
|
||||
0.05695659, -0.00123841, -0.4744786, -0.35869038,
|
||||
-0.06418842, -0.13502428, -0.501764, 0.22830659,
|
||||
-0.46367589, 0.26016325, -0.03894562, -0.16368064};
|
||||
|
||||
std::vector<float> recurrent_to_forget_weights = {
|
||||
-0.48684245, -0.06655136, 0.42224967, 0.2112639,
|
||||
0.27654213, 0.20864892, -0.07646349, 0.45877004,
|
||||
0.00141793, -0.14609534, 0.36447752, 0.09196436,
|
||||
0.28053468, 0.01560611, -0.20127171, -0.01140004};
|
||||
|
||||
std::vector<float> recurrent_to_output_weights = {
|
||||
0.43385774, -0.17194885, 0.2718237, 0.09215671,
|
||||
0.24107647, -0.39835793, 0.18212086, 0.01301402,
|
||||
0.48572797, -0.50656658, 0.20047462, -0.20607421,
|
||||
-0.51818722, -0.15390486, 0.0468148, 0.39922136};
|
||||
|
||||
auto r2i_weight_tensor = g->CreateTensor(r2i_weight_spec, recurrent_to_input_weights.data());
|
||||
auto r2c_weight_tensor = g->CreateTensor(r2c_weight_spec, recurrent_to_cell_weights.data());
|
||||
auto r2f_weight_tensor = g->CreateTensor(r2f_weight_spec, recurrent_to_forget_weights.data());
|
||||
auto r2o_weight_tensor = g->CreateTensor(r2o_weight_spec, recurrent_to_output_weights.data());
|
||||
|
||||
// std::vector<std::vector<float>> golden_output = {
|
||||
// {{-0.02973187, 0.1229473, 0.20885126, -0.15358765}},
|
||||
// {{-0.03716109, 0.12507336, 0.41193449, -0.20860538}},
|
||||
// {{-0.15053082, 0.09120187, 0.24278517, -0.12222792}}};
|
||||
|
||||
std::vector<float> input = {2,3};
|
||||
auto input_tensor = g->CreateTensor(input_tensor_spec, input.data());
|
||||
|
||||
auto lstm_cell_op = g->CreateOperation<tim::vx::ops::UnidirectionalSequenceLstm>(
|
||||
0.0, 0.0, tim::vx::ops::UnidirectionalSequenceLstm::ActivationType::kTANH, 0.0, false,
|
||||
tim::vx::ops::UnidirectionalSequenceLstm::kNONE, true);
|
||||
|
||||
(*lstm_cell_op)
|
||||
.BindInputs({
|
||||
input_tensor,
|
||||
g->CreateTensorPlaceHolder(), /*h_state*/
|
||||
g->CreateTensorPlaceHolder(), /*c_state*/
|
||||
input2input_weights_tensor,
|
||||
input2forget_weights_tensor,
|
||||
input2cell_weights_tensor,
|
||||
input2output_weights_tensor,
|
||||
|
||||
r2i_weight_tensor,
|
||||
r2c_weight_tensor,
|
||||
r2f_weight_tensor,
|
||||
r2o_weight_tensor,
|
||||
|
||||
g->CreateTensorPlaceHolder(), /*weight_c2i*/
|
||||
g->CreateTensorPlaceHolder(), /*weight_c2f*/
|
||||
g->CreateTensorPlaceHolder(), /*weight_c2o*/
|
||||
|
||||
input_gate_bias_tensor,
|
||||
forget_gate_bias_tensor,
|
||||
cell_gate_bias_tensor,
|
||||
output_gate_bias_tensor,
|
||||
|
||||
// optional for projection
|
||||
/*weight_prj*/
|
||||
/*bias_prj*/
|
||||
|
||||
// Layer norm IFCO
|
||||
// g->CreateTensorPlaceHolder(),
|
||||
// g->CreateTensorPlaceHolder(),
|
||||
// g->CreateTensorPlaceHolder(),
|
||||
// g->CreateTensorPlaceHolder(),
|
||||
|
||||
// AUX weight_i2i|i2f|i2c|i2o
|
||||
// g->CreateTensorPlaceHolder(),
|
||||
// g->CreateTensorPlaceHolder(),
|
||||
// g->CreateTensorPlaceHolder(),
|
||||
// g->CreateTensorPlaceHolder(),
|
||||
})
|
||||
.BindOutputs({
|
||||
output_tensor,
|
||||
make_empty_tensor(
|
||||
g, tim::vx::ShapeType({n_output, n_batch}),
|
||||
tim::vx::TensorAttribute::OUTPUT), // Output_H_STATE
|
||||
make_empty_tensor(
|
||||
g, tim::vx::ShapeType({n_cell, n_batch}),
|
||||
tim::vx::TensorAttribute::OUTPUT), // output_C_State
|
||||
});
|
||||
|
||||
g->Compile();
|
||||
g->Run();
|
||||
|
||||
std::vector<float> golden = {{-0.02973187, 0.1229473, 0.20885126, -0.15358765}};
|
||||
std::vector<float> real(golden.size());
|
||||
output_tensor->CopyDataFromTensor(real.data());
|
||||
|
||||
for(uint32_t i = 0; i < golden.size(); ++i) {
|
||||
EXPECT_NEAR(golden[i], real[i], 0.001f) << "Failed at " << i << "th item";
|
||||
}
|
||||
}
|
||||
Loading…
Reference in New Issue