add int8 quantized unit_test for conv2d
Signed-off-by: Jing.Deng <Jing.Deng@verisilicon.com>
This commit is contained in:
parent
a7d962ac5c
commit
e2c52d2d8a
|
|
@ -1320,3 +1320,210 @@ TEST(Conv2d, shape_9_9_1_1_uint8_DilationQuantizedTest) {
|
|||
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
|
||||
EXPECT_EQ(golden, output);
|
||||
}
|
||||
|
||||
TEST(Conv2d, shape_3_2_2_1_int8_QuantizedPerTensorTest) {
|
||||
auto ctx = tim::vx::Context::Create();
|
||||
auto graph = ctx->CreateGraph();
|
||||
tim::vx::ShapeType input_shape({3, 2, 2, 1}); //whcn
|
||||
tim::vx::ShapeType weight_shape({2, 2, 2, 2}); //whio
|
||||
tim::vx::ShapeType bias_shape({weight_shape[3]});
|
||||
tim::vx::ShapeType output_shape(
|
||||
{2, 1, weight_shape[3], input_shape[3]}); //whcn
|
||||
|
||||
float InputMin = -63.5, InputMax = 64, WeightMin = -63.5, WeightMax = 64,
|
||||
OutputMin = -63.5, OutputMax = 64;
|
||||
|
||||
std::pair<float, int32_t> scalesAndZp;
|
||||
|
||||
scalesAndZp = QuantizationParams<int8_t>(InputMin, InputMax);
|
||||
std::vector<float> scalesInput = {scalesAndZp.first};
|
||||
std::vector<int32_t> zeroPointsInput = {scalesAndZp.second};
|
||||
|
||||
scalesAndZp = QuantizationParams<int8_t>(WeightMin, WeightMax);
|
||||
std::vector<float> scalesWeight = {1};
|
||||
std::vector<int32_t> zeroPointsWeight = {0};
|
||||
|
||||
std::vector<float> scalesBias = {scalesInput[0] * scalesWeight[0]};
|
||||
std::vector<int32_t> zeroPointsBias = {0};
|
||||
|
||||
scalesAndZp = QuantizationParams<int8_t>(OutputMin, OutputMax);
|
||||
std::vector<float> scalesOutput = {scalesAndZp.first};
|
||||
std::vector<int32_t> zeroPointsOutput = {scalesAndZp.second};
|
||||
|
||||
tim::vx::Quantization quantInput(tim::vx::QuantType::ASYMMETRIC, 2,
|
||||
scalesInput, zeroPointsInput);
|
||||
tim::vx::Quantization quantWeight(tim::vx::QuantType::ASYMMETRIC, 2,
|
||||
scalesWeight, zeroPointsWeight);
|
||||
tim::vx::Quantization quantBias(tim::vx::QuantType::ASYMMETRIC, 2, scalesBias,
|
||||
zeroPointsBias);
|
||||
tim::vx::Quantization quantOutput(tim::vx::QuantType::ASYMMETRIC, 2,
|
||||
scalesOutput, zeroPointsOutput);
|
||||
|
||||
tim::vx::TensorSpec input_spec(tim::vx::DataType::INT8, input_shape,
|
||||
tim::vx::TensorAttribute::INPUT, quantInput);
|
||||
tim::vx::TensorSpec weight_spec(tim::vx::DataType::INT8, weight_shape,
|
||||
tim::vx::TensorAttribute::CONSTANT,
|
||||
quantWeight);
|
||||
tim::vx::TensorSpec bias_spec(tim::vx::DataType::INT32, bias_shape,
|
||||
tim::vx::TensorAttribute::CONSTANT, quantBias);
|
||||
tim::vx::TensorSpec output_spec(tim::vx::DataType::INT8, output_shape,
|
||||
tim::vx::TensorAttribute::OUTPUT,
|
||||
quantOutput);
|
||||
|
||||
// Input data nchw
|
||||
// min:-63.5 max:64 scale:0.5 Zp:-1
|
||||
std::vector<float> input_data_float = {3, 1, -2, 4, 2, -3,
|
||||
2, -1, -3, 3, -2, -4};
|
||||
std::vector<int8_t> input_data =
|
||||
Quantize<int8_t>(input_data_float, scalesInput[0], zeroPointsInput[0]);
|
||||
|
||||
// weight_float_data = {1, 3, 3, 5, 2, 4, 4, 6, 7, 5, 3, 1, 8, 6, 4, 2};
|
||||
std::vector<int8_t> weight_data = {1, 3, 3, 5, 2, 4, 4, 6,
|
||||
7, 5, 3, 1, 8, 6, 4, 2};
|
||||
|
||||
// bias data
|
||||
std::vector<float> bias_data_float = {3, -2};
|
||||
std::vector<int32_t> bias_data =
|
||||
Quantize<int32_t>(bias_data_float, scalesBias[0], zeroPointsBias[0]);
|
||||
|
||||
// golden_int8_data = {61, -115, 111, -89}
|
||||
// min:-63.5 max:64 scale:0.5 Zp:-1
|
||||
std::vector<float> golden_float = {31, -57, 56, -44};
|
||||
std::vector<int8_t> golden =
|
||||
Quantize<int8_t>(golden_float, scalesOutput[0], zeroPointsOutput[0]);
|
||||
|
||||
auto input_tensor = graph->CreateTensor(input_spec);
|
||||
auto weight_tensor = graph->CreateTensor(weight_spec, weight_data.data());
|
||||
auto bias_tensor = graph->CreateTensor(bias_spec, bias_data.data());
|
||||
auto output_tensor = graph->CreateTensor(output_spec);
|
||||
|
||||
std::array<uint32_t, 2> ksize({weight_shape[1], weight_shape[2]});
|
||||
std::array<uint32_t, 2> stride({1, 1});
|
||||
std::array<uint32_t, 2> dilation({1, 1});
|
||||
auto padding = tim::vx::PadType::VALID;
|
||||
|
||||
auto conv2d = graph->CreateOperation<tim::vx::ops::Conv2d>(
|
||||
weight_shape[3], padding, ksize, stride, dilation);
|
||||
(*conv2d)
|
||||
.BindInput(input_tensor)
|
||||
.BindInput(weight_tensor)
|
||||
.BindInput(bias_tensor)
|
||||
.BindOutput(output_tensor);
|
||||
|
||||
EXPECT_TRUE(graph->Compile());
|
||||
|
||||
input_tensor->CopyDataToTensor(input_data.data());
|
||||
|
||||
EXPECT_TRUE(graph->Run());
|
||||
|
||||
uint32_t output_size = 1;
|
||||
for (auto i : output_tensor->GetShape()) {
|
||||
output_size *= i;
|
||||
}
|
||||
std::vector<int8_t> output(output_size);
|
||||
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
|
||||
EXPECT_EQ(golden, output);
|
||||
}
|
||||
|
||||
TEST(Conv2d, shape_3_2_2_1_int8_QuantizedPerChannelTest) {
|
||||
auto ctx = tim::vx::Context::Create();
|
||||
auto graph = ctx->CreateGraph();
|
||||
tim::vx::ShapeType input_shape({3, 2, 2, 1}); //whcn
|
||||
tim::vx::ShapeType weight_shape({2, 2, 2, 2}); //whio
|
||||
tim::vx::ShapeType bias_shape({weight_shape[3]});
|
||||
tim::vx::ShapeType output_shape(
|
||||
{2, 1, weight_shape[3], input_shape[3]}); //whcn
|
||||
|
||||
float InputMin = -63.5, InputMax = 64, WeightMin = 0, WeightMax = 0,
|
||||
OutputMin = -63.5, OutputMax = 64;
|
||||
|
||||
std::pair<float, int32_t> scalesAndZp;
|
||||
|
||||
scalesAndZp = QuantizationParams<int8_t>(InputMin, InputMax);
|
||||
std::vector<float> scalesInput = {scalesAndZp.first};
|
||||
std::vector<int32_t> zeroPointsInput = {scalesAndZp.second};
|
||||
|
||||
scalesAndZp = QuantizationParams<int8_t>(WeightMin, WeightMax);
|
||||
std::vector<float> scalesWeight = {1, 2};
|
||||
std::vector<int32_t> zeroPointsWeight = {0, 0};
|
||||
|
||||
std::vector<float> scalesBias = {scalesInput[0] * scalesWeight[0],
|
||||
scalesInput[0] * scalesWeight[1]};
|
||||
std::vector<int32_t> zeroPointsBias = {0, 0};
|
||||
|
||||
scalesAndZp = QuantizationParams<int8_t>(OutputMin, OutputMax);
|
||||
std::vector<float> scalesOutput = {scalesAndZp.first};
|
||||
std::vector<int32_t> zeroPointsOutput = {scalesAndZp.second};
|
||||
|
||||
tim::vx::Quantization quantInput(tim::vx::QuantType::ASYMMETRIC, 2,
|
||||
scalesInput, zeroPointsInput);
|
||||
tim::vx::Quantization quantWeight(tim::vx::QuantType::SYMMETRIC_PER_CHANNEL,
|
||||
2, scalesWeight, zeroPointsWeight);
|
||||
tim::vx::Quantization quantBias(tim::vx::QuantType::SYMMETRIC_PER_CHANNEL, 0,
|
||||
scalesBias, zeroPointsBias);
|
||||
tim::vx::Quantization quantOutput(tim::vx::QuantType::ASYMMETRIC, 2,
|
||||
scalesOutput, zeroPointsOutput);
|
||||
|
||||
tim::vx::TensorSpec input_spec(tim::vx::DataType::INT8, input_shape,
|
||||
tim::vx::TensorAttribute::INPUT, quantInput);
|
||||
tim::vx::TensorSpec weight_spec(tim::vx::DataType::INT8, weight_shape,
|
||||
tim::vx::TensorAttribute::CONSTANT,
|
||||
quantWeight);
|
||||
tim::vx::TensorSpec bias_spec(tim::vx::DataType::INT32, bias_shape,
|
||||
tim::vx::TensorAttribute::CONSTANT, quantBias);
|
||||
tim::vx::TensorSpec output_spec(tim::vx::DataType::INT8, output_shape,
|
||||
tim::vx::TensorAttribute::OUTPUT,
|
||||
quantOutput);
|
||||
|
||||
// Input data nchw
|
||||
// min:-63.5 max:64 scale:0.5 Zp:-1
|
||||
std::vector<float> input_data_float = {3, 1, -2, 4, 2, -3,
|
||||
2, -1, -3, 3, -2, -4};
|
||||
std::vector<int8_t> input_data =
|
||||
Quantize<int8_t>(input_data_float, scalesInput[0], zeroPointsInput[0]);
|
||||
|
||||
// weight_data_float = {1, 3, 3, 5, 2, 4, 4, 6, 7, 5, 3, 1, 8, 6, 4, 2};
|
||||
std::vector<int8_t> weight_data = {1, 3, 3, 5, 2, 4, 4, 6,
|
||||
4, 3, 2, 1, 4, 3, 2, 1};
|
||||
|
||||
// bias_data_float ={3, -2};
|
||||
std::vector<int32_t> bias_data = {6, -2};
|
||||
|
||||
// golden data
|
||||
// min:-63.5 max:64 scale:0.5 Zp:-1
|
||||
std::vector<float> golden_float = {31, -57, 64, -46};
|
||||
std::vector<int8_t> golden =
|
||||
Quantize<int8_t>(golden_float, scalesOutput[0], zeroPointsOutput[0]);
|
||||
|
||||
auto input_tensor = graph->CreateTensor(input_spec);
|
||||
auto weight_tensor = graph->CreateTensor(weight_spec, weight_data.data());
|
||||
auto bias_tensor = graph->CreateTensor(bias_spec, bias_data.data());
|
||||
auto output_tensor = graph->CreateTensor(output_spec);
|
||||
|
||||
std::array<uint32_t, 2> ksize({weight_shape[1], weight_shape[2]});
|
||||
std::array<uint32_t, 2> stride({1, 1});
|
||||
std::array<uint32_t, 2> dilation({1, 1});
|
||||
auto padding = tim::vx::PadType::VALID;
|
||||
|
||||
auto conv2d = graph->CreateOperation<tim::vx::ops::Conv2d>(
|
||||
weight_shape[3], padding, ksize, stride, dilation);
|
||||
(*conv2d)
|
||||
.BindInput(input_tensor)
|
||||
.BindInput(weight_tensor)
|
||||
.BindInput(bias_tensor)
|
||||
.BindOutput(output_tensor);
|
||||
|
||||
EXPECT_TRUE(graph->Compile());
|
||||
|
||||
input_tensor->CopyDataToTensor(input_data.data());
|
||||
|
||||
EXPECT_TRUE(graph->Run());
|
||||
|
||||
uint32_t output_size = 1;
|
||||
for (auto i : output_tensor->GetShape()) {
|
||||
output_size *= i;
|
||||
}
|
||||
std::vector<int8_t> output(output_size);
|
||||
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
|
||||
EXPECT_EQ(golden, output);
|
||||
}
|
||||
|
|
|
|||
Loading…
Reference in New Issue