Fixed deconv2d layout infer bug

Type: Bug fix

Signed-off-by: Chen Xin <jack.chen@verisilicon.com>
This commit is contained in:
Chen Xin 2023-02-17 14:17:23 +08:00 committed by Sven
parent 1c6041c394
commit e71d537042
1 changed files with 78 additions and 77 deletions

View File

@ -40,92 +40,93 @@ class DeConv2dLayoutInfer : public OpLayoutInfer {
void OnInputs(
std::vector<std::shared_ptr<vx::Tensor>>& next_tensors) override {
auto src_deconv2d = std::static_pointer_cast<vx::ops::DeConv2d>(op_);
vx::DataLayout layout = op_->impl()->layout_;
auto required_pv = MakeShared(4);
if (layout == vx::DataLayout::CWHN) {
required_pv = std::make_shared<PermuteVector<4>>(kCWHN2WHCN);
auto kernel_layout = src_deconv2d->KernelDataLayout();
std::shared_ptr<IPermuteVector> required_pv, weight_required_pv;
switch (layout)
{ // kernel layout must be IWHO in tflite & nnapi
case vx::DataLayout::CWHN:
required_pv = std::make_shared<PermuteVector<4>>(kCWHN2WHCN);
break;
case vx::DataLayout::WHCN:
required_pv = MakeShared(4);
break;
default:
VSILOGE("The layout of input is not support.");
required_pv = MakeShared(4);
break;
}
switch (kernel_layout) {
case vx::DataLayout::OcIcWH: // Support TVM Kernel Layout
weight_required_pv = std::make_shared<PermuteVector<4>>(kOcIcWH2WHIcOc);
break;
case vx::DataLayout::IcOcWH:
weight_required_pv = std::make_shared<PermuteVector<4>>(kIcOcWH2WHIcOc);
break;
case vx::DataLayout::IcWHOc: // Support nnapi & tflite Kernel Layout
weight_required_pv = std::make_shared<PermuteVector<4>>(kIcWHOc2WHIcOc);
break;
default: // Default set to IWHO for compatibility with previous APIs
weight_required_pv = std::make_shared<PermuteVector<4>>(kIcWHOc2WHIcOc);
break;
}
auto src_inputs = op_->impl()->InputsTensor();
for (const auto& in : src_inputs) {
std::shared_ptr<vx::Tensor> infer_tensor;
std::shared_ptr<IPermuteVector> trans_pv;
if (in->IsConstTensor() &&
!(in->GetSpec().attr_ & vx::TensorAttribute::INPUT)) {
// For bias
if (in->GetShape().size() == 1) {
infer_tensor = context_->infer_graph_->CreateTensor(in->GetSpec(),
in->GetDataRef());
trans_pv = MakeShared(1);
} else {
// For weight
if (!required_pv->IsAligned()) {
auto src_deconv2d =
std::static_pointer_cast<vx::ops::DeConv2d>(op_);
// Support TVM Kernel Layout
if (src_deconv2d->KernelDataLayout() == vx::DataLayout::OcIcWH) {
trans_pv = std::make_shared<PermuteVector<4>>(kOcIcWH2WHIcOc);
infer_tensor = PermuteConstTensor(in, trans_pv);
} else if (src_deconv2d->KernelDataLayout() ==
vx::DataLayout::WHIcOc) {
infer_tensor = context_->infer_graph_->CreateTensor(
in->GetSpec(), in->GetDataRef());
trans_pv = MakeShared(required_pv->Rank());
} else {
infer_tensor = PermuteConstTensor(in, required_pv);
trans_pv = required_pv;
}
} else {
infer_tensor = context_->infer_graph_->CreateTensor(
in->GetSpec(), in->GetDataRef());
trans_pv = MakeShared(required_pv->Rank());
}
}
auto input_tensors = op_->impl()->InputsTensor();
std::shared_ptr<vx::Tensor> infer_input, infer_weight, infer_bias;
// For input
auto input_pv = context_->GetPermuteVector(input_tensors[0]);
auto final_pv = input_pv->Reverse()->Add(required_pv);
if (!final_pv->IsAligned()) {
infer_input =
InsertPermute(context_->GetMapedTensor(input_tensors[0]), final_pv);
context_->SetPermuteVector(input_tensors[0], required_pv);
} else {
infer_input = context_->GetMapedTensor(input_tensors[0]);
context_->SetPermuteVector(input_tensors[0], input_pv);
}
context_->UpdateTensorMap(input_tensors[0], infer_input);
// For weight
if (input_tensors[1]->IsConstTensor()) {
if (!weight_required_pv->IsAligned()) {
infer_weight = PermuteConstTensor(input_tensors[1], weight_required_pv);
} else {
// For bias
if (in->GetShape().size() == 1) {
infer_tensor = context_->GetMapedTensor(in);
trans_pv = MakeShared(1);
} else {
// For input/weight
auto pv = context_->GetPermuteVector(in);
auto final_pv = pv->Reverse()->Add(required_pv);
if (!final_pv->IsAligned()) {
infer_tensor =
InsertPermute(context_->GetMapedTensor(in), final_pv);
trans_pv = required_pv;
} else {
infer_tensor = context_->GetMapedTensor(in);
trans_pv = pv;
}
}
infer_weight = context_->infer_graph_->CreateTensor(
input_tensors[1]->GetSpec(), input_tensors[1]->GetDataRef());
}
context_->UpdateTensorMap(in, infer_tensor);
context_->SetPermuteVector(in, trans_pv);
context_->SetPermuteVector(input_tensors[1], weight_required_pv);
context_->UpdateTensorMap(input_tensors[1], infer_weight);
} else {
auto weight_pv = context_->GetPermuteVector(input_tensors[1]);
auto final_pv = weight_pv->Reverse()->Add(weight_required_pv);
if (!final_pv->IsAligned()) {
infer_weight =
InsertPermute(context_->GetMapedTensor(input_tensors[1]), final_pv);
context_->SetPermuteVector(input_tensors[1], weight_required_pv);
} else {
infer_weight = context_->GetMapedTensor(input_tensors[1]);
context_->SetPermuteVector(input_tensors[1], weight_pv);
}
context_->UpdateTensorMap(input_tensors[1], infer_weight);
}
auto pad_type =
TranslatePadType(op_->impl()->node()->nn_param.deconv.pad_type);
std::array<uint32_t, 2> ksize = {
op_->impl()->node()->nn_param.deconv.ksize[0],
op_->impl()->node()->nn_param.deconv.ksize[1]};
std::array<uint32_t, 2> stride = {
op_->impl()->node()->nn_param.deconv.stride[0],
op_->impl()->node()->nn_param.deconv.stride[1]};
std::array<uint32_t, 2> output_padding = {
op_->impl()->node()->nn_param.deconv.output_padding[0],
op_->impl()->node()->nn_param.deconv.output_padding[0]};
std::array<uint32_t, 4> pad = {op_->impl()->node()->nn_param.deconv.pad[0],
op_->impl()->node()->nn_param.deconv.pad[1],
op_->impl()->node()->nn_param.deconv.pad[2],
op_->impl()->node()->nn_param.deconv.pad[3]};
int32_t oc_count = op_->impl()->node()->nn_param.deconv.weights;
const uint32_t group = op_->impl()->node()->nn_param.deconv.group;
// For bias
if (input_tensors.size() == 3) {
if (input_tensors[2]->IsConstTensor()) {
infer_bias = context_->infer_graph_->CreateTensor(
input_tensors[2]->GetSpec(), input_tensors[2]->GetDataRef());
} else {
infer_bias = context_->GetMapedTensor(input_tensors[2]);
}
auto bias_pv = MakeShared(1);
context_->UpdateTensorMap(input_tensors[2], infer_bias);
context_->SetPermuteVector(input_tensors[2], bias_pv);
}
auto deconv = context_->infer_graph_->CreateOperation<vx::ops::DeConv2d>(
oc_count, pad_type, ksize, stride, output_padding, pad, group);
auto deconv = op_->Clone(context_->infer_graph_);
auto infer_out = CreateOutputsTensor(required_pv);
for (const auto& i_src : src_inputs) {
for (const auto& i_src : input_tensors) {
(*deconv).BindInput(context_->GetMapedTensor(i_src));
}
(*deconv).BindOutput(infer_out[0]);