Added roi_align layoutinfer & cases (#615)
* Added roi_align layoutinfer & cases Type: New feature Signed-off-by: Chen <jack.chen@verisilicon.com> * Update instancenorm op spec .json Type: bug fix Signed-off-by: Chen <jack.chen@verisilicon.com> * Added roi_pool layoutinfer & fixed case bug Type: new feature Signed-off-by: Chen <jack.chen@verisilicon.com> --------- Signed-off-by: Chen <jack.chen@verisilicon.com> Co-authored-by: Chen <jack.chen@verisilicon.com>
This commit is contained in:
parent
32c5a61601
commit
ea8046ec9c
|
|
@ -6,6 +6,14 @@
|
||||||
"dtype": "float",
|
"dtype": "float",
|
||||||
"Optional": "true",
|
"Optional": "true",
|
||||||
"default": "1e-5f"
|
"default": "1e-5f"
|
||||||
|
},
|
||||||
|
{"name": "input_layout",
|
||||||
|
"dtype": "tim::vx::DataLayout",
|
||||||
|
"Optional": "true",
|
||||||
|
"default": "tim::vx::DataLayout::WHCN",
|
||||||
|
"range":["tim::vx::DataLayout::ANY",
|
||||||
|
"tim::vx::DataLayout::WHCN",
|
||||||
|
"tim::vx::DataLayout::CWHN"]
|
||||||
}
|
}
|
||||||
]
|
]
|
||||||
}
|
}
|
||||||
|
|
|
||||||
|
|
@ -51,7 +51,7 @@ class RoiAlign : public BuiltinOp {
|
||||||
public:
|
public:
|
||||||
RoiAlign(Graph* graph, int32_t output_height, int32_t output_width,
|
RoiAlign(Graph* graph, int32_t output_height, int32_t output_width,
|
||||||
float height_ratio, float width_ratio, int32_t height_sample_num,
|
float height_ratio, float width_ratio, int32_t height_sample_num,
|
||||||
int32_t width_sample_num);
|
int32_t width_sample_num, DataLayout input_layout = DataLayout::WHCN);
|
||||||
|
|
||||||
std::shared_ptr<Operation> Clone(
|
std::shared_ptr<Operation> Clone(
|
||||||
std::shared_ptr<Graph>& graph) const override;
|
std::shared_ptr<Graph>& graph) const override;
|
||||||
|
|
|
||||||
|
|
@ -37,17 +37,17 @@ namespace ops {
|
||||||
*
|
*
|
||||||
* Select and scale the feature map of each region of interest to a unified output
|
* Select and scale the feature map of each region of interest to a unified output
|
||||||
* size by max-pooling.
|
* size by max-pooling.
|
||||||
*
|
*
|
||||||
* pool_type : only support max-pooling (MAX)
|
* pool_type : only support max-pooling (MAX)
|
||||||
* scale : The ratio of image to feature map (Range: 0 < scale <= 1)
|
* scale : The ratio of image to feature map (Range: 0 < scale <= 1)
|
||||||
* size : The size of roi pooling (height/width)
|
* size : The size of roi pooling (height/width)
|
||||||
*
|
*
|
||||||
*/
|
*/
|
||||||
|
|
||||||
class RoiPool : public BuiltinOp {
|
class RoiPool : public BuiltinOp {
|
||||||
public:
|
public:
|
||||||
RoiPool(Graph* graph, PoolType type, float scale,
|
RoiPool(Graph* graph, PoolType type, float scale, const std::array<uint32_t, 2>& size,
|
||||||
const std::array<uint32_t, 2>& size);
|
DataLayout input_layout = DataLayout::WHCN);
|
||||||
|
|
||||||
std::shared_ptr<Operation> Clone(
|
std::shared_ptr<Operation> Clone(
|
||||||
std::shared_ptr<Graph>& graph) const override;
|
std::shared_ptr<Graph>& graph) const override;
|
||||||
|
|
|
||||||
|
|
@ -19,6 +19,14 @@
|
||||||
},
|
},
|
||||||
{"name":"width_sample_num",
|
{"name":"width_sample_num",
|
||||||
"dtype": "int32_t"
|
"dtype": "int32_t"
|
||||||
|
},
|
||||||
|
{"name": "input_layout",
|
||||||
|
"dtype": "tim::vx::DataLayout",
|
||||||
|
"Optional": "true",
|
||||||
|
"default": "tim::vx::DataLayout::WHCN",
|
||||||
|
"range":["tim::vx::DataLayout::ANY",
|
||||||
|
"tim::vx::DataLayout::WHCN",
|
||||||
|
"tim::vx::DataLayout::CWHN"]
|
||||||
}
|
}
|
||||||
]
|
]
|
||||||
}
|
}
|
||||||
|
|
|
||||||
|
|
@ -14,6 +14,14 @@
|
||||||
},
|
},
|
||||||
{"name":"size",
|
{"name":"size",
|
||||||
"dtype": "std::array<uint32_t, 2>"
|
"dtype": "std::array<uint32_t, 2>"
|
||||||
|
},
|
||||||
|
{"name": "input_layout",
|
||||||
|
"dtype": "tim::vx::DataLayout",
|
||||||
|
"Optional": "true",
|
||||||
|
"default": "tim::vx::DataLayout::WHCN",
|
||||||
|
"range":["tim::vx::DataLayout::ANY",
|
||||||
|
"tim::vx::DataLayout::WHCN",
|
||||||
|
"tim::vx::DataLayout::CWHN"]
|
||||||
}
|
}
|
||||||
]
|
]
|
||||||
}
|
}
|
||||||
|
|
|
||||||
|
|
@ -69,6 +69,8 @@
|
||||||
#include "ops/broadcast_layout_inference.h"
|
#include "ops/broadcast_layout_inference.h"
|
||||||
#include "ops/unidirectional_rnn_layout_inference.h"
|
#include "ops/unidirectional_rnn_layout_inference.h"
|
||||||
#include "ops/bidirectional_rnn_layout_inference.h"
|
#include "ops/bidirectional_rnn_layout_inference.h"
|
||||||
|
#include "ops/roi_align_layout_inference.h"
|
||||||
|
#include "ops/roi_pool_layout_inference.h"
|
||||||
|
|
||||||
#include <algorithm>
|
#include <algorithm>
|
||||||
#include <deque>
|
#include <deque>
|
||||||
|
|
@ -260,6 +262,8 @@ std::vector<std::shared_ptr<vx::Tensor>> HandleLayoutInfer(
|
||||||
REGIST_LAYOUT_INFERENCE(VSI_NN_OP_LRN2, LRN);
|
REGIST_LAYOUT_INFERENCE(VSI_NN_OP_LRN2, LRN);
|
||||||
REGIST_LAYOUT_INFERENCE(VSI_NN_OP_L2_NORMALIZE, L2Normalization);
|
REGIST_LAYOUT_INFERENCE(VSI_NN_OP_L2_NORMALIZE, L2Normalization);
|
||||||
REGIST_LAYOUT_INFERENCE(VSI_NN_OP_INSTANCE_NORM, InstanceNorm);
|
REGIST_LAYOUT_INFERENCE(VSI_NN_OP_INSTANCE_NORM, InstanceNorm);
|
||||||
|
REGIST_LAYOUT_INFERENCE(VSI_NN_OP_ROI_ALIGN, RoiAlign);
|
||||||
|
REGIST_LAYOUT_INFERENCE(VSI_NN_OP_ROI_POOL, RoiPool);
|
||||||
REGIST_LAYOUT_INFERENCE(VSI_NN_OP_ADDN, AddN);
|
REGIST_LAYOUT_INFERENCE(VSI_NN_OP_ADDN, AddN);
|
||||||
REGIST_LAYOUT_INFERENCE(VSI_NN_OP_PRELU, PRelu);
|
REGIST_LAYOUT_INFERENCE(VSI_NN_OP_PRELU, PRelu);
|
||||||
REGIST_LAYOUT_INFERENCE(VSI_NN_OP_GATHER, Gather);
|
REGIST_LAYOUT_INFERENCE(VSI_NN_OP_GATHER, Gather);
|
||||||
|
|
|
||||||
|
|
@ -351,4 +351,72 @@ TEST(Resize, bilinear_outputsize) {
|
||||||
std::vector<float> output(golden.size());
|
std::vector<float> output(golden.size());
|
||||||
EXPECT_TRUE(infer_output->CopyDataFromTensor(output.data()));
|
EXPECT_TRUE(infer_output->CopyDataFromTensor(output.data()));
|
||||||
EXPECT_TRUE(ArraysMatch(golden, output, 1e-5f));
|
EXPECT_TRUE(ArraysMatch(golden, output, 1e-5f));
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST(RoiAlign, nhwc) {
|
||||||
|
auto ctx = tim::vx::Context::Create();
|
||||||
|
auto src_graph = ctx->CreateGraph();
|
||||||
|
|
||||||
|
tim::vx::ShapeType input_shape({1, 4, 4, 1}); //cwhn
|
||||||
|
tim::vx::ShapeType regions_shape({4, 4});
|
||||||
|
tim::vx::ShapeType batch_index_shape({4});
|
||||||
|
tim::vx::ShapeType output_shape({1, 2, 2, 4});
|
||||||
|
|
||||||
|
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, input_shape,
|
||||||
|
tim::vx::TensorAttribute::INPUT);
|
||||||
|
tim::vx::TensorSpec regions_spec(tim::vx::DataType::FLOAT32, regions_shape,
|
||||||
|
tim::vx::TensorAttribute::INPUT);
|
||||||
|
tim::vx::TensorSpec batch_index_spec(tim::vx::DataType::INT32,
|
||||||
|
batch_index_shape,
|
||||||
|
tim::vx::TensorAttribute::INPUT);
|
||||||
|
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, output_shape,
|
||||||
|
tim::vx::TensorAttribute::OUTPUT);
|
||||||
|
|
||||||
|
std::vector<float> input_data = {-10.0f, -1.0f, 4.0f, -5.0f, -8.0f, -2.0f,
|
||||||
|
9.0f, 1.0f, 7.0f, -2.0f, 3.0f, -7.0f,
|
||||||
|
-2.0f, 10.0f, -3.0f, 5.0f};
|
||||||
|
|
||||||
|
std::vector<float> regions_data = {2.0f, 2.0f, 4.0f, 4.0f, 0.0f, 0.0f,
|
||||||
|
8.0f, 8.0f, 2.0f, 0.0f, 4.0f, 8.0f,
|
||||||
|
0.0f, 2.0f, 8.0f, 4.0f};
|
||||||
|
|
||||||
|
std::vector<int32_t> batch_index_data = {0, 0, 0, 0};
|
||||||
|
|
||||||
|
std::vector<float> golden = {
|
||||||
|
0.375f, 5.125f, -0.375f, 2.875f, -0.5f, -0.3125f, 3.1875f, 1.125f,
|
||||||
|
0.25f, 4.25f, 4.875f, 0.625f, -0.1875f, 1.125f, 0.9375f, -2.625f};
|
||||||
|
|
||||||
|
auto input_tensor = src_graph->CreateTensor(input_spec);
|
||||||
|
auto regions_tensor = src_graph->CreateTensor(regions_spec, regions_data.data());
|
||||||
|
auto batch_index_tensor =
|
||||||
|
src_graph->CreateTensor(batch_index_spec, batch_index_data.data());
|
||||||
|
auto output_tensor = src_graph->CreateTensor(output_spec);
|
||||||
|
|
||||||
|
auto roi_align = src_graph->CreateOperation<tim::vx::ops::RoiAlign>(
|
||||||
|
2, 2, 2.0f, 2.0f, 4, 4, tim::vx::DataLayout::CWHN);
|
||||||
|
(*roi_align)
|
||||||
|
.BindInput(input_tensor)
|
||||||
|
.BindInput(regions_tensor)
|
||||||
|
.BindInput(batch_index_tensor)
|
||||||
|
.BindOutput(output_tensor);
|
||||||
|
|
||||||
|
// Do layout inference
|
||||||
|
auto transform = tim::transform::LayoutInference(src_graph, ctx);
|
||||||
|
auto infer_graph = transform.first;
|
||||||
|
auto graph_io_map = transform.second;
|
||||||
|
infer_graph->Compile();
|
||||||
|
|
||||||
|
auto infer_input = graph_io_map[src_graph->InputsTensor()[0]];
|
||||||
|
auto infer_beta = graph_io_map[src_graph->InputsTensor()[1]];
|
||||||
|
auto infer_gamma = graph_io_map[src_graph->InputsTensor()[2]];
|
||||||
|
auto infer_output = graph_io_map[src_graph->OutputsTensor()[0]];
|
||||||
|
|
||||||
|
infer_input->CopyDataToTensor(input_data.data(), input_data.size() * sizeof(float));
|
||||||
|
infer_beta->CopyDataToTensor(regions_data.data(), regions_data.size() * sizeof(float));
|
||||||
|
infer_gamma->CopyDataToTensor(batch_index_data.data(), batch_index_data.size() * sizeof(float));
|
||||||
|
infer_graph->Run();
|
||||||
|
|
||||||
|
std::vector<float> output(golden.size());
|
||||||
|
EXPECT_TRUE(infer_output->CopyDataFromTensor(output.data()));
|
||||||
|
EXPECT_TRUE(ArraysMatch(golden, output, 1e-5f));
|
||||||
}
|
}
|
||||||
|
|
@ -0,0 +1,99 @@
|
||||||
|
/****************************************************************************
|
||||||
|
*
|
||||||
|
* Copyright (c) 2020-2023 Vivante Corporation
|
||||||
|
*
|
||||||
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
||||||
|
* copy of this software and associated documentation files (the "Software"),
|
||||||
|
* to deal in the Software without restriction, including without limitation
|
||||||
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||||||
|
* and/or sell copies of the Software, and to permit persons to whom the
|
||||||
|
* Software is furnished to do so, subject to the following conditions:
|
||||||
|
*
|
||||||
|
* The above copyright notice and this permission notice shall be included in
|
||||||
|
* all copies or substantial portions of the Software.
|
||||||
|
*
|
||||||
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||||
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||||
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||||
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||||
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||||||
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
||||||
|
* DEALINGS IN THE SOFTWARE.
|
||||||
|
*
|
||||||
|
*****************************************************************************/
|
||||||
|
#ifndef TIM_LAYOUT_INFER_ROI_ALIGN_LAYOUT_INFERENCE_H_
|
||||||
|
#define TIM_LAYOUT_INFER_ROI_ALIGN_LAYOUT_INFERENCE_H_
|
||||||
|
|
||||||
|
#include "tim/vx/ops/roi_align.h"
|
||||||
|
|
||||||
|
#include "ops/op_layout_inference.h"
|
||||||
|
#include "permute_vector.h"
|
||||||
|
#include "builtin_op_impl.h"
|
||||||
|
|
||||||
|
namespace tim {
|
||||||
|
namespace transform {
|
||||||
|
|
||||||
|
class RoiAlignLayoutInfer : public OpLayoutInfer {
|
||||||
|
public:
|
||||||
|
RoiAlignLayoutInfer(
|
||||||
|
const std::shared_ptr<vx::Operation> op,
|
||||||
|
std::shared_ptr<layout_inference_impl::LayoutInferContext>& context)
|
||||||
|
: OpLayoutInfer(op, context) {}
|
||||||
|
|
||||||
|
void OnInputs(
|
||||||
|
std::vector<std::shared_ptr<vx::Tensor>>& next_tensors) override {
|
||||||
|
vx::DataLayout layout = op_->impl()->layout_;
|
||||||
|
auto input_tensors = op_->impl()->InputsTensor();
|
||||||
|
std::shared_ptr<IPermuteVector> required_pv;
|
||||||
|
switch (layout)
|
||||||
|
{ // kernel layout must be IWHO in tflite & nnapi
|
||||||
|
case vx::DataLayout::CWHN:
|
||||||
|
required_pv = std::make_shared<PermuteVector<4>>(kCWHN2WHCN);
|
||||||
|
break;
|
||||||
|
case vx::DataLayout::WHCN:
|
||||||
|
required_pv = MakeShared(4);
|
||||||
|
break;
|
||||||
|
default:
|
||||||
|
VSILOGE("The layout of input is not support.");
|
||||||
|
required_pv = MakeShared(4);
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
auto input_pv = context_->GetPermuteVector(input_tensors[0]);
|
||||||
|
auto final_pv = input_pv->Reverse()->Add(required_pv);
|
||||||
|
std::shared_ptr<vx::Tensor> infer_input;
|
||||||
|
if (!final_pv->IsAligned()) {
|
||||||
|
infer_input = InsertPermute(context_->GetMapedTensor(input_tensors[0]), final_pv);
|
||||||
|
context_->SetPermuteVector(input_tensors[0], required_pv);
|
||||||
|
} else {
|
||||||
|
infer_input = context_->GetMapedTensor(input_tensors[0]);
|
||||||
|
context_->SetPermuteVector(input_tensors[0], input_pv);
|
||||||
|
}
|
||||||
|
context_->UpdateTensorMap(input_tensors[0], infer_input);
|
||||||
|
|
||||||
|
for (const auto& t_src : op_->impl()->InputsTensor()) {
|
||||||
|
if(t_src->IsConstTensor()) {
|
||||||
|
std::vector<uint8_t> dataRef(t_src->GetSpec().GetByteSize());
|
||||||
|
t_src->CopyDataFromTensor(dataRef.data());
|
||||||
|
auto t_infer = context_->infer_graph_->CreateTensor(
|
||||||
|
t_src->GetSpec(), (const void*)dataRef.data());
|
||||||
|
context_->SetPermuteVector(t_src, MakeShared(t_src->GetShape().size()));
|
||||||
|
context_->UpdateTensorMap(t_src, t_infer);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
auto roi_align = op_->Clone(context_->infer_graph_);
|
||||||
|
auto outs_infer = CreateOutputsTensor(required_pv);
|
||||||
|
for (const auto& i_src : op_->impl()->InputsTensor()) {
|
||||||
|
(*roi_align).BindInput(context_->GetMapedTensor(i_src));
|
||||||
|
}
|
||||||
|
(*roi_align).BindOutput(outs_infer[0]);
|
||||||
|
context_->SetPermuteVector(op_->impl()->OutputsTensor()[0], required_pv);
|
||||||
|
// Add out tensor of src_graph into next_tensor
|
||||||
|
next_tensors.push_back(op_->impl()->OutputsTensor()[0]);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace transform
|
||||||
|
} // namespace tim
|
||||||
|
|
||||||
|
#endif
|
||||||
|
|
@ -0,0 +1,99 @@
|
||||||
|
/****************************************************************************
|
||||||
|
*
|
||||||
|
* Copyright (c) 2020-2023 Vivante Corporation
|
||||||
|
*
|
||||||
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
||||||
|
* copy of this software and associated documentation files (the "Software"),
|
||||||
|
* to deal in the Software without restriction, including without limitation
|
||||||
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||||||
|
* and/or sell copies of the Software, and to permit persons to whom the
|
||||||
|
* Software is furnished to do so, subject to the following conditions:
|
||||||
|
*
|
||||||
|
* The above copyright notice and this permission notice shall be included in
|
||||||
|
* all copies or substantial portions of the Software.
|
||||||
|
*
|
||||||
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||||
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||||
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||||
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||||
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||||||
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
||||||
|
* DEALINGS IN THE SOFTWARE.
|
||||||
|
*
|
||||||
|
*****************************************************************************/
|
||||||
|
#ifndef TIM_LAYOUT_INFER_ROI_POOL_LAYOUT_INFERENCE_H_
|
||||||
|
#define TIM_LAYOUT_INFER_ROI_POOL_LAYOUT_INFERENCE_H_
|
||||||
|
|
||||||
|
#include "tim/vx/ops/roi_pool.h"
|
||||||
|
|
||||||
|
#include "ops/op_layout_inference.h"
|
||||||
|
#include "permute_vector.h"
|
||||||
|
#include "builtin_op_impl.h"
|
||||||
|
|
||||||
|
namespace tim {
|
||||||
|
namespace transform {
|
||||||
|
|
||||||
|
class RoiPoolLayoutInfer : public OpLayoutInfer {
|
||||||
|
public:
|
||||||
|
RoiPoolLayoutInfer(
|
||||||
|
const std::shared_ptr<vx::Operation> op,
|
||||||
|
std::shared_ptr<layout_inference_impl::LayoutInferContext>& context)
|
||||||
|
: OpLayoutInfer(op, context) {}
|
||||||
|
|
||||||
|
void OnInputs(
|
||||||
|
std::vector<std::shared_ptr<vx::Tensor>>& next_tensors) override {
|
||||||
|
vx::DataLayout layout = op_->impl()->layout_;
|
||||||
|
auto input_tensors = op_->impl()->InputsTensor();
|
||||||
|
std::shared_ptr<IPermuteVector> required_pv;
|
||||||
|
switch (layout)
|
||||||
|
{ // kernel layout must be IWHO in tflite & nnapi
|
||||||
|
case vx::DataLayout::CWHN:
|
||||||
|
required_pv = std::make_shared<PermuteVector<4>>(kCWHN2WHCN);
|
||||||
|
break;
|
||||||
|
case vx::DataLayout::WHCN:
|
||||||
|
required_pv = MakeShared(4);
|
||||||
|
break;
|
||||||
|
default:
|
||||||
|
VSILOGE("The layout of input is not support.");
|
||||||
|
required_pv = MakeShared(4);
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
auto input_pv = context_->GetPermuteVector(input_tensors[0]);
|
||||||
|
auto final_pv = input_pv->Reverse()->Add(required_pv);
|
||||||
|
std::shared_ptr<vx::Tensor> infer_input;
|
||||||
|
if (!final_pv->IsAligned()) {
|
||||||
|
infer_input = InsertPermute(context_->GetMapedTensor(input_tensors[0]), final_pv);
|
||||||
|
context_->SetPermuteVector(input_tensors[0], required_pv);
|
||||||
|
} else {
|
||||||
|
infer_input = context_->GetMapedTensor(input_tensors[0]);
|
||||||
|
context_->SetPermuteVector(input_tensors[0], input_pv);
|
||||||
|
}
|
||||||
|
context_->UpdateTensorMap(input_tensors[0], infer_input);
|
||||||
|
|
||||||
|
for (const auto& t_src : op_->impl()->InputsTensor()) {
|
||||||
|
if(t_src->IsConstTensor()) {
|
||||||
|
std::vector<uint8_t> dataRef(t_src->GetSpec().GetByteSize());
|
||||||
|
t_src->CopyDataFromTensor(dataRef.data());
|
||||||
|
auto t_infer = context_->infer_graph_->CreateTensor(
|
||||||
|
t_src->GetSpec(), (const void*)dataRef.data());
|
||||||
|
context_->SetPermuteVector(t_src, MakeShared(t_src->GetShape().size()));
|
||||||
|
context_->UpdateTensorMap(t_src, t_infer);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
auto roi_pool = op_->Clone(context_->infer_graph_);
|
||||||
|
auto outs_infer = CreateOutputsTensor(required_pv);
|
||||||
|
for (const auto& i_src : op_->impl()->InputsTensor()) {
|
||||||
|
(*roi_pool).BindInput(context_->GetMapedTensor(i_src));
|
||||||
|
}
|
||||||
|
(*roi_pool).BindOutput(outs_infer[0]);
|
||||||
|
context_->SetPermuteVector(op_->impl()->OutputsTensor()[0], required_pv);
|
||||||
|
// Add out tensor of src_graph into next_tensor
|
||||||
|
next_tensors.push_back(op_->impl()->OutputsTensor()[0]);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace transform
|
||||||
|
} // namespace tim
|
||||||
|
|
||||||
|
#endif
|
||||||
|
|
@ -32,8 +32,8 @@ namespace ops {
|
||||||
|
|
||||||
RoiAlign::RoiAlign(Graph* graph, int32_t output_height, int32_t output_width,
|
RoiAlign::RoiAlign(Graph* graph, int32_t output_height, int32_t output_width,
|
||||||
float height_ratio, float width_ratio, int32_t height_sample_num,
|
float height_ratio, float width_ratio, int32_t height_sample_num,
|
||||||
int32_t width_sample_num)
|
int32_t width_sample_num, DataLayout input_layout)
|
||||||
: BuiltinOp(graph, VSI_NN_OP_ROI_ALIGN),
|
: BuiltinOp(graph, VSI_NN_OP_ROI_ALIGN, 0, 0, input_layout),
|
||||||
output_height_(output_height),
|
output_height_(output_height),
|
||||||
output_width_(output_width),
|
output_width_(output_width),
|
||||||
height_ratio_(height_ratio),
|
height_ratio_(height_ratio),
|
||||||
|
|
@ -53,7 +53,8 @@ std::shared_ptr<Operation> RoiAlign::Clone(
|
||||||
std::shared_ptr<Graph>& graph) const {
|
std::shared_ptr<Graph>& graph) const {
|
||||||
return graph->CreateOperation<RoiAlign>(
|
return graph->CreateOperation<RoiAlign>(
|
||||||
this->output_height_, this->output_width_, this->height_ratio_,
|
this->output_height_, this->output_width_, this->height_ratio_,
|
||||||
this->width_ratio_, this->height_sample_num_, this->width_sample_num_);
|
this->width_ratio_, this->height_sample_num_, this->width_sample_num_,
|
||||||
|
this->impl_->layout_);
|
||||||
}
|
}
|
||||||
|
|
||||||
} // namespace ops
|
} // namespace ops
|
||||||
|
|
|
||||||
|
|
@ -32,8 +32,8 @@ namespace vx {
|
||||||
namespace ops {
|
namespace ops {
|
||||||
|
|
||||||
RoiPool::RoiPool(Graph* graph, PoolType type, float scale,
|
RoiPool::RoiPool(Graph* graph, PoolType type, float scale,
|
||||||
const std::array<uint32_t, 2>& size)
|
const std::array<uint32_t, 2>& size, DataLayout input_layout)
|
||||||
: BuiltinOp(graph, VSI_NN_OP_ROI_POOL),
|
: BuiltinOp(graph, VSI_NN_OP_ROI_POOL, 0, 0, input_layout),
|
||||||
type_(type),
|
type_(type),
|
||||||
scale_(scale),
|
scale_(scale),
|
||||||
size_(size) {
|
size_(size) {
|
||||||
|
|
@ -46,7 +46,7 @@ RoiPool::RoiPool(Graph* graph, PoolType type, float scale,
|
||||||
std::shared_ptr<Operation> RoiPool::Clone(
|
std::shared_ptr<Operation> RoiPool::Clone(
|
||||||
std::shared_ptr<Graph>& graph) const {
|
std::shared_ptr<Graph>& graph) const {
|
||||||
return graph->CreateOperation<RoiPool>(
|
return graph->CreateOperation<RoiPool>(
|
||||||
this->type_, this->scale_, this->size_);
|
this->type_, this->scale_, this->size_, this->impl_->layout_);
|
||||||
}
|
}
|
||||||
|
|
||||||
} // namespace ops
|
} // namespace ops
|
||||||
|
|
|
||||||
|
|
@ -57,7 +57,7 @@ TEST(RoiPool, shape_4_2_1_1_float32) {
|
||||||
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, output_shape,
|
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, output_shape,
|
||||||
tim::vx::TensorAttribute::OUTPUT);
|
tim::vx::TensorAttribute::OUTPUT);
|
||||||
|
|
||||||
std::vector<float> input_data = {-10.0f, -1.0f, 4.0f, -5.0f,
|
std::vector<float> input_data = {-10.0f, -1.0f, 4.0f, -5.0f,
|
||||||
-8.0f, -2.0f, 9.0f, 1.0f,
|
-8.0f, -2.0f, 9.0f, 1.0f,
|
||||||
7.0f, -2.0f, 3.0f, -7.0f,
|
7.0f, -2.0f, 3.0f, -7.0f,
|
||||||
-2.0f, 10.0f, -3.0f, 5.0f};
|
-2.0f, 10.0f, -3.0f, 5.0f};
|
||||||
|
|
@ -67,7 +67,6 @@ TEST(RoiPool, shape_4_2_1_1_float32) {
|
||||||
0.0f, 2.0f, 0.0f, 4.0f, 8.0f,
|
0.0f, 2.0f, 0.0f, 4.0f, 8.0f,
|
||||||
0.0f, 0.0f, 2.0f, 8.0f, 4.0f};
|
0.0f, 0.0f, 2.0f, 8.0f, 4.0f};
|
||||||
|
|
||||||
|
|
||||||
std::vector<float> golden = {
|
std::vector<float> golden = {
|
||||||
-2, 9, -2, 3,
|
-2, 9, -2, 3,
|
||||||
9, 9, 10, 5,
|
9, 9, 10, 5,
|
||||||
|
|
@ -77,18 +76,16 @@ TEST(RoiPool, shape_4_2_1_1_float32) {
|
||||||
auto input_tensor = graph->CreateTensor(input_spec);
|
auto input_tensor = graph->CreateTensor(input_spec);
|
||||||
auto regions_tensor = graph->CreateTensor(regions_spec);
|
auto regions_tensor = graph->CreateTensor(regions_spec);
|
||||||
auto output_tensor = graph->CreateTensor(output_spec);
|
auto output_tensor = graph->CreateTensor(output_spec);
|
||||||
|
|
||||||
std::array<uint32_t, 2> size;
|
std::array<uint32_t, 2> size;
|
||||||
size[0] = out_height;
|
size[0] = out_width;
|
||||||
size[1] = out_width;
|
size[1] = out_height;
|
||||||
auto roi_pool = graph->CreateOperation<tim::vx::ops::RoiPool>(tim::vx::PoolType::MAX, scale, size);
|
auto roi_pool = graph->CreateOperation<tim::vx::ops::RoiPool>(tim::vx::PoolType::MAX, scale, size);
|
||||||
(*roi_pool)
|
(*roi_pool)
|
||||||
.BindInput(input_tensor)
|
.BindInput(input_tensor)
|
||||||
.BindInput(regions_tensor)
|
.BindInput(regions_tensor)
|
||||||
.BindOutput(output_tensor);
|
.BindOutput(output_tensor);
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
EXPECT_TRUE(input_tensor->CopyDataToTensor(input_data.data(), input_data.size()*sizeof(float)));
|
EXPECT_TRUE(input_tensor->CopyDataToTensor(input_data.data(), input_data.size()*sizeof(float)));
|
||||||
EXPECT_TRUE(regions_tensor->CopyDataToTensor(regions_data.data(), regions_data.size()*sizeof(float)));
|
EXPECT_TRUE(regions_tensor->CopyDataToTensor(regions_data.data(), regions_data.size()*sizeof(float)));
|
||||||
EXPECT_TRUE(graph->Compile());
|
EXPECT_TRUE(graph->Compile());
|
||||||
|
|
@ -97,4 +94,4 @@ TEST(RoiPool, shape_4_2_1_1_float32) {
|
||||||
std::vector<float> output(num_rois * out_height * out_width * depth);
|
std::vector<float> output(num_rois * out_height * out_width * depth);
|
||||||
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
|
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
|
||||||
EXPECT_EQ(golden, output);
|
EXPECT_EQ(golden, output);
|
||||||
}
|
}
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue