Support specifying pad_mode in pad (#355)
https://github.com/VeriSilicon/TIM-VX/issues/307 Signed-off-by: Chen Xin <jack.chen@verisilicon.com> Co-authored-by: Chen Xin <jack.chen@verisilicon.com>
This commit is contained in:
parent
479fc576ae
commit
eb21143987
|
|
@ -35,19 +35,35 @@ namespace ops {
|
||||||
* Pads a tensor.
|
* Pads a tensor.
|
||||||
*
|
*
|
||||||
* - const_val : the value to pad.
|
* - const_val : the value to pad.
|
||||||
|
* - pad_mode : the mode of pad.
|
||||||
|
* - front_size : Add pad values to the left and top.
|
||||||
|
* - back_size : Add pad values to the right and bottom.
|
||||||
*/
|
*/
|
||||||
|
|
||||||
class Pad : public DirectMapOp {
|
class Pad : public DirectMapOp {
|
||||||
public:
|
public:
|
||||||
Pad(Graph* graph, const std::vector<uint32_t>& front_size,
|
typedef enum {
|
||||||
const std::vector<uint32_t>& back_size, int32_t const_val);
|
// signature
|
||||||
|
PAD_MODE_CONSTANT,
|
||||||
|
PAD_MODE_EDGE,
|
||||||
|
PAD_MODE_SYMMETRIC,
|
||||||
|
PAD_MODE_REFLECT,
|
||||||
|
} pad_mode_type;
|
||||||
|
|
||||||
std::shared_ptr<Operation> Clone(std::shared_ptr<Graph>& graph) const override;
|
Pad(Graph* graph, const std::vector<uint32_t>& front_size,
|
||||||
|
const std::vector<uint32_t>& back_size, int32_t const_val);
|
||||||
|
Pad(Graph* graph, const std::vector<uint32_t>& front_size,
|
||||||
|
const std::vector<uint32_t>& back_size, int32_t const_val,
|
||||||
|
pad_mode_type pad_mode);
|
||||||
|
|
||||||
|
std::shared_ptr<Operation> Clone(
|
||||||
|
std::shared_ptr<Graph>& graph) const override;
|
||||||
|
|
||||||
protected:
|
protected:
|
||||||
std::vector<uint32_t> front_size_;
|
std::vector<uint32_t> front_size_;
|
||||||
std::vector<uint32_t> back_size_;
|
std::vector<uint32_t> back_size_;
|
||||||
int32_t const_val_;
|
int32_t const_val_;
|
||||||
|
pad_mode_type pad_mode_;
|
||||||
};
|
};
|
||||||
} // namespace ops
|
} // namespace ops
|
||||||
} // namespace vx
|
} // namespace vx
|
||||||
|
|
|
||||||
|
|
@ -51,15 +51,13 @@ class PadLayoutInfer : public OpLayoutInfer {
|
||||||
sizeof(uint32_t) * dim_num);
|
sizeof(uint32_t) * dim_num);
|
||||||
memcpy(back_size.data(), op_->impl()->node()->nn_param.pad.back_size,
|
memcpy(back_size.data(), op_->impl()->node()->nn_param.pad.back_size,
|
||||||
sizeof(uint32_t) * dim_num);
|
sizeof(uint32_t) * dim_num);
|
||||||
int32_t pad_value = op_->impl()->node()->nn_param.pad.const_val;
|
|
||||||
|
|
||||||
if (!input_pv->IsAligned()) {
|
if (!input_pv->IsAligned()) {
|
||||||
front_size = MapMultipleAxis(input_pv->AsStdVec(), front_size);
|
front_size = MapMultipleAxis(input_pv->AsStdVec(), front_size);
|
||||||
back_size = MapMultipleAxis(input_pv->AsStdVec(), back_size);
|
back_size = MapMultipleAxis(input_pv->AsStdVec(), back_size);
|
||||||
}
|
}
|
||||||
|
|
||||||
auto pad = context_->infer_graph_->CreateOperation<vx::ops::Pad>(
|
auto pad = op_->Clone(context_->infer_graph_);
|
||||||
front_size, back_size, pad_value);
|
|
||||||
auto out_infer = CreateOutputsTensor(input_pv);
|
auto out_infer = CreateOutputsTensor(input_pv);
|
||||||
(*pad).BindInput(context_->GetMapedTensor(i_src));
|
(*pad).BindInput(context_->GetMapedTensor(i_src));
|
||||||
(*pad).BindOutput(out_infer[0]);
|
(*pad).BindOutput(out_infer[0]);
|
||||||
|
|
|
||||||
|
|
@ -29,21 +29,31 @@
|
||||||
namespace tim {
|
namespace tim {
|
||||||
namespace vx {
|
namespace vx {
|
||||||
namespace ops {
|
namespace ops {
|
||||||
|
|
||||||
Pad::Pad(Graph* graph, const std::vector<uint32_t>& front_size,
|
Pad::Pad(Graph* graph, const std::vector<uint32_t>& front_size,
|
||||||
const std::vector<uint32_t>& back_size, int32_t const_val)
|
const std::vector<uint32_t>& back_size, int32_t const_val)
|
||||||
|
: Pad(graph, front_size, back_size, const_val, PAD_MODE_CONSTANT) {}
|
||||||
|
|
||||||
|
Pad::Pad(Graph* graph, const std::vector<uint32_t>& front_size,
|
||||||
|
const std::vector<uint32_t>& back_size, int32_t const_val,
|
||||||
|
pad_mode_type pad_mode)
|
||||||
: DirectMapOp(graph, VSI_NN_OP_PAD),
|
: DirectMapOp(graph, VSI_NN_OP_PAD),
|
||||||
front_size_(front_size),
|
front_size_(front_size),
|
||||||
back_size_(back_size),
|
back_size_(back_size),
|
||||||
const_val_(const_val) {
|
const_val_(const_val),
|
||||||
|
pad_mode_(pad_mode) {
|
||||||
this->impl()->node()->nn_param.pad.front_size = front_size_.data();
|
this->impl()->node()->nn_param.pad.front_size = front_size_.data();
|
||||||
this->impl()->node()->nn_param.pad.back_size = back_size_.data();
|
this->impl()->node()->nn_param.pad.back_size = back_size_.data();
|
||||||
this->impl()->node()->nn_param.pad.dim_num = front_size_.size();
|
this->impl()->node()->nn_param.pad.dim_num = front_size_.size();
|
||||||
this->impl()->node()->nn_param.pad.const_val = const_val_;
|
if (pad_mode_ == PAD_MODE_CONSTANT) {
|
||||||
this->impl()->node()->nn_param.pad.mode = VSI_NN_PAD_MODE_CONSTANT;
|
this->impl()->node()->nn_param.pad.const_val = const_val_;
|
||||||
|
}
|
||||||
|
this->impl()->node()->nn_param.pad.mode = (vsi_nn_pad_mode_e)pad_mode_;
|
||||||
}
|
}
|
||||||
|
|
||||||
std::shared_ptr<Operation> Pad::Clone(std::shared_ptr<Graph>& graph) const {
|
std::shared_ptr<Operation> Pad::Clone(std::shared_ptr<Graph>& graph) const {
|
||||||
return graph->CreateOperation<Pad>(this->front_size_, this->back_size_, this->const_val_);
|
return graph->CreateOperation<Pad>(this->front_size_, this->back_size_,
|
||||||
|
this->const_val_, this->pad_mode_);
|
||||||
}
|
}
|
||||||
|
|
||||||
} // namespace ops
|
} // namespace ops
|
||||||
|
|
|
||||||
|
|
@ -0,0 +1,143 @@
|
||||||
|
/****************************************************************************
|
||||||
|
*
|
||||||
|
* Copyright (c) 2021 Vivante Corporation
|
||||||
|
*
|
||||||
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
||||||
|
* copy of this software and associated documentation files (the "Software"),
|
||||||
|
* to deal in the Software without restriction, including without limitation
|
||||||
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||||||
|
* and/or sell copies of the Software, and to permit persons to whom the
|
||||||
|
* Software is furnished to do so, subject to the following conditions:
|
||||||
|
*
|
||||||
|
* The above copyright notice and this permission notice shall be included in
|
||||||
|
* all copies or substantial portions of the Software.
|
||||||
|
*
|
||||||
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||||
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||||
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||||
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||||
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||||||
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
||||||
|
* DEALINGS IN THE SOFTWARE.
|
||||||
|
*
|
||||||
|
*****************************************************************************/
|
||||||
|
#include "tim/vx/context.h"
|
||||||
|
#include "tim/vx/graph.h"
|
||||||
|
#include "tim/vx/ops/pad.h"
|
||||||
|
#include "tim/vx/types.h"
|
||||||
|
#include "test_utils.h"
|
||||||
|
|
||||||
|
#include "gtest/gtest.h"
|
||||||
|
|
||||||
|
TEST(Pad, constant) {
|
||||||
|
auto ctx = tim::vx::Context::Create();
|
||||||
|
auto graph = ctx->CreateGraph();
|
||||||
|
|
||||||
|
tim::vx::ShapeType input_shape({3, 2});
|
||||||
|
tim::vx::ShapeType output_shape({5, 4});
|
||||||
|
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, input_shape,
|
||||||
|
tim::vx::TensorAttribute::INPUT);
|
||||||
|
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, output_shape,
|
||||||
|
tim::vx::TensorAttribute::OUTPUT);
|
||||||
|
|
||||||
|
auto input_tensor = graph->CreateTensor(input_spec);
|
||||||
|
auto output_tensor = graph->CreateTensor(output_spec);
|
||||||
|
|
||||||
|
std::vector<float> input_data = {
|
||||||
|
0, 1, 2, 3, 4, 5, 6,
|
||||||
|
};
|
||||||
|
|
||||||
|
std::vector<float> golden = {
|
||||||
|
1, 1, 1, 1, 1, 1, 0, 1, 2, 1, 1, 3, 4, 5, 1, 1, 1, 1, 1, 1,
|
||||||
|
};
|
||||||
|
|
||||||
|
EXPECT_TRUE(
|
||||||
|
input_tensor->CopyDataToTensor(input_data.data(), input_data.size() * 4));
|
||||||
|
std::vector<uint32_t> front = {1, 1};
|
||||||
|
std::vector<uint32_t> back = {1, 1};
|
||||||
|
auto op = graph->CreateOperation<tim::vx::ops::Pad>(
|
||||||
|
front, back, 1, tim::vx::ops::Pad::PAD_MODE_CONSTANT);
|
||||||
|
(*op).BindInput(input_tensor).BindOutput(output_tensor);
|
||||||
|
|
||||||
|
EXPECT_TRUE(graph->Compile());
|
||||||
|
EXPECT_TRUE(graph->Run());
|
||||||
|
std::vector<float> output(golden.size());
|
||||||
|
|
||||||
|
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
|
||||||
|
EXPECT_EQ(golden, output);
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST(Pad, reflect) {
|
||||||
|
auto ctx = tim::vx::Context::Create();
|
||||||
|
auto graph = ctx->CreateGraph();
|
||||||
|
|
||||||
|
tim::vx::ShapeType input_shape({3, 2});
|
||||||
|
tim::vx::ShapeType output_shape({5, 4});
|
||||||
|
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, input_shape,
|
||||||
|
tim::vx::TensorAttribute::INPUT);
|
||||||
|
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, output_shape,
|
||||||
|
tim::vx::TensorAttribute::OUTPUT);
|
||||||
|
|
||||||
|
auto input_tensor = graph->CreateTensor(input_spec);
|
||||||
|
auto output_tensor = graph->CreateTensor(output_spec);
|
||||||
|
|
||||||
|
std::vector<float> input_data = {
|
||||||
|
0, 1, 2, 3, 4, 5, 6,
|
||||||
|
};
|
||||||
|
|
||||||
|
std::vector<float> golden = {
|
||||||
|
0, 0, 1, 2, 2, 0, 0, 1, 2, 2, 3, 3, 4, 5, 5, 3, 3, 4, 5, 5,
|
||||||
|
};
|
||||||
|
|
||||||
|
EXPECT_TRUE(
|
||||||
|
input_tensor->CopyDataToTensor(input_data.data(), input_data.size() * 4));
|
||||||
|
std::vector<uint32_t> front = {1, 1};
|
||||||
|
std::vector<uint32_t> back = {1, 1};
|
||||||
|
auto op = graph->CreateOperation<tim::vx::ops::Pad>(
|
||||||
|
front, back, 0, tim::vx::ops::Pad::PAD_MODE_EDGE);
|
||||||
|
(*op).BindInput(input_tensor).BindOutput(output_tensor);
|
||||||
|
|
||||||
|
EXPECT_TRUE(graph->Compile());
|
||||||
|
EXPECT_TRUE(graph->Run());
|
||||||
|
std::vector<float> output(golden.size());
|
||||||
|
|
||||||
|
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
|
||||||
|
EXPECT_EQ(golden, output);
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST(Pad, edge) {
|
||||||
|
auto ctx = tim::vx::Context::Create();
|
||||||
|
auto graph = ctx->CreateGraph();
|
||||||
|
|
||||||
|
tim::vx::ShapeType input_shape({3, 2});
|
||||||
|
tim::vx::ShapeType output_shape({5, 4});
|
||||||
|
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, input_shape,
|
||||||
|
tim::vx::TensorAttribute::INPUT);
|
||||||
|
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, output_shape,
|
||||||
|
tim::vx::TensorAttribute::OUTPUT);
|
||||||
|
|
||||||
|
auto input_tensor = graph->CreateTensor(input_spec);
|
||||||
|
auto output_tensor = graph->CreateTensor(output_spec);
|
||||||
|
|
||||||
|
std::vector<float> input_data = {
|
||||||
|
0, 1, 2, 3, 4, 5, 6,
|
||||||
|
};
|
||||||
|
|
||||||
|
std::vector<float> golden = {0, 0, 1, 2, 2, 0, 0, 1, 2, 2,
|
||||||
|
3, 3, 4, 5, 5, 3, 3, 4, 5, 5};
|
||||||
|
|
||||||
|
EXPECT_TRUE(
|
||||||
|
input_tensor->CopyDataToTensor(input_data.data(), input_data.size() * 4));
|
||||||
|
std::vector<uint32_t> front = {1, 1};
|
||||||
|
std::vector<uint32_t> back = {1, 1};
|
||||||
|
auto op = graph->CreateOperation<tim::vx::ops::Pad>(
|
||||||
|
front, back, 0, tim::vx::ops::Pad::PAD_MODE_EDGE);
|
||||||
|
(*op).BindInput(input_tensor).BindOutput(output_tensor);
|
||||||
|
|
||||||
|
EXPECT_TRUE(graph->Compile());
|
||||||
|
EXPECT_TRUE(graph->Run());
|
||||||
|
std::vector<float> output(golden.size());
|
||||||
|
|
||||||
|
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
|
||||||
|
EXPECT_EQ(golden, output);
|
||||||
|
}
|
||||||
Loading…
Reference in New Issue