Add map for Resize1d (#69)
Signed-off-by: zhao.xia <zhao.xia@verisilicon.com>
This commit is contained in:
parent
eae539575c
commit
f90f3eedfd
|
|
@ -0,0 +1,65 @@
|
||||||
|
/****************************************************************************
|
||||||
|
*
|
||||||
|
* Copyright (c) 2021 Vivante Corporation
|
||||||
|
*
|
||||||
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
||||||
|
* copy of this software and associated documentation files (the "Software"),
|
||||||
|
* to deal in the Software without restriction, including without limitation
|
||||||
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||||||
|
* and/or sell copies of the Software, and to permit persons to whom the
|
||||||
|
* Software is furnished to do so, subject to the following conditions:
|
||||||
|
*
|
||||||
|
* The above copyright notice and this permission notice shall be included in
|
||||||
|
* all copies or substantial portions of the Software.
|
||||||
|
*
|
||||||
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||||
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||||
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||||
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||||
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||||||
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
||||||
|
* DEALINGS IN THE SOFTWARE.
|
||||||
|
*
|
||||||
|
*****************************************************************************/
|
||||||
|
#ifndef TIM_VX_OPS_RESIZE1D_H_
|
||||||
|
#define TIM_VX_OPS_RESIZE1D_H_
|
||||||
|
#include "tim/vx/operation.h"
|
||||||
|
|
||||||
|
namespace tim {
|
||||||
|
namespace vx {
|
||||||
|
namespace ops {
|
||||||
|
|
||||||
|
/**
|
||||||
|
* ## Resize1d
|
||||||
|
*
|
||||||
|
* Resize1ds 1D tensors to given size.
|
||||||
|
*
|
||||||
|
* - type : NEAREST_NEIGHBOR, BILINEAR or AREA.
|
||||||
|
* - factor : scale the input size. DO NOT use it with target_height / target_width together.
|
||||||
|
* - align_corners : If True, the centers of the 4 corner pixels of the input and output
|
||||||
|
* tensors are aligned, preserving the values at the corner pixels.
|
||||||
|
* - half_pixel_centers : If True, the pixel centers are assumed to be at (0.5, 0.5).
|
||||||
|
* This is the default behavior of image.resize in TF 2.0. If this parameter is True,
|
||||||
|
* then align_corners parameter must be False.
|
||||||
|
* - target_height / target_width : output height / width. DO NOT use it with factor together.
|
||||||
|
*/
|
||||||
|
|
||||||
|
class Resize1d : public Operation {
|
||||||
|
public:
|
||||||
|
Resize1d(Graph* graph, ResizeType type, float factor, bool align_corners,
|
||||||
|
bool half_pixel_centers, int target_size,
|
||||||
|
DataLayout layout = DataLayout::WHCN);
|
||||||
|
|
||||||
|
protected:
|
||||||
|
const ResizeType type_;
|
||||||
|
const float factor_;
|
||||||
|
const bool align_corners_;
|
||||||
|
const bool half_pixel_centers_;
|
||||||
|
const int target_size_;
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace ops
|
||||||
|
} // namespace vx
|
||||||
|
} // namespace tim
|
||||||
|
|
||||||
|
#endif /* TIM_VX_OPS_RESIZE1D_H_ */
|
||||||
|
|
@ -150,7 +150,7 @@ Mish|MISH|Mapped|[tfa.activations.mish](https://tensorflow.google.cn/addons/api_
|
||||||
||SCATTER_ND|Unmapped|[tf.scatter_nd](https://tensorflow.google.cn/api_docs/python/tf/scatter_nd)
|
||SCATTER_ND|Unmapped|[tf.scatter_nd](https://tensorflow.google.cn/api_docs/python/tf/scatter_nd)
|
||||||
|DeConv1d|DECONVOLUTION1D|Mapped|[tf.nn.conv1d_transpose](https://tensorflow.google.cn/api_docs/python/tf/nn/conv1d_transpose)
|
|DeConv1d|DECONVOLUTION1D|Mapped|[tf.nn.conv1d_transpose](https://tensorflow.google.cn/api_docs/python/tf/nn/conv1d_transpose)
|
||||||
||INTERP|Unmapped
|
||INTERP|Unmapped
|
||||||
||RESIZE_1D|Unmapped
|
Resize1d|RESIZE_1D|Mapped|[Onnx.resize 1D image](https://github.com/onnx/onnx/blob/master/docs/Operators.md#resize)
|
||||||
||CONV_RELU|Deprecated
|
||CONV_RELU|Deprecated
|
||||||
||CONV_RELU_POOL|Deprecated
|
||CONV_RELU_POOL|Deprecated
|
||||||
||FCL|Deprecated
|
||FCL|Deprecated
|
||||||
|
|
|
||||||
|
|
@ -0,0 +1,52 @@
|
||||||
|
/****************************************************************************
|
||||||
|
*
|
||||||
|
* Copyright (c) 2021 Vivante Corporation
|
||||||
|
*
|
||||||
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
||||||
|
* copy of this software and associated documentation files (the "Software"),
|
||||||
|
* to deal in the Software without restriction, including without limitation
|
||||||
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||||||
|
* and/or sell copies of the Software, and to permit persons to whom the
|
||||||
|
* Software is furnished to do so, subject to the following conditions:
|
||||||
|
*
|
||||||
|
* The above copyright notice and this permission notice shall be included in
|
||||||
|
* all copies or substantial portions of the Software.
|
||||||
|
*
|
||||||
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||||
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||||
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||||
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||||
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||||||
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
||||||
|
* DEALINGS IN THE SOFTWARE.
|
||||||
|
*
|
||||||
|
*****************************************************************************/
|
||||||
|
#include "tim/vx/ops/resize1d.h"
|
||||||
|
|
||||||
|
#include "operation_private.h"
|
||||||
|
#include "type_utils.h"
|
||||||
|
#include "vsi_nn_pub.h"
|
||||||
|
|
||||||
|
namespace tim {
|
||||||
|
namespace vx {
|
||||||
|
namespace ops {
|
||||||
|
|
||||||
|
Resize1d::Resize1d(Graph* graph, ResizeType type, float factor, bool align_corners,
|
||||||
|
bool half_pixel_centers, int target_size, DataLayout layout)
|
||||||
|
: Operation(graph, VSI_NN_OP_RESIZE_1D, 0, 0, layout),
|
||||||
|
type_(type),
|
||||||
|
factor_(factor),
|
||||||
|
align_corners_(align_corners),
|
||||||
|
half_pixel_centers_(half_pixel_centers),
|
||||||
|
target_size_(target_size) {
|
||||||
|
impl()->node()->nn_param.resize_1d.type = TranslateResizeType(type);
|
||||||
|
impl()->node()->nn_param.resize_1d.factor = factor;
|
||||||
|
impl()->node()->nn_param.resize_1d.align_corners = ToVxBool(align_corners);
|
||||||
|
impl()->node()->nn_param.resize_1d.half_pixel_centers =
|
||||||
|
ToVxBool(half_pixel_centers);
|
||||||
|
impl()->node()->nn_param.resize_1d.size[0] = target_size;
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace ops
|
||||||
|
} // namespace vx
|
||||||
|
} // namespace tim
|
||||||
|
|
@ -0,0 +1,114 @@
|
||||||
|
/****************************************************************************
|
||||||
|
*
|
||||||
|
* Copyright (c) 2021 Vivante Corporation
|
||||||
|
*
|
||||||
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
||||||
|
* copy of this software and associated documentation files (the "Software"),
|
||||||
|
* to deal in the Software without restriction, including without limitation
|
||||||
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||||||
|
* and/or sell copies of the Software, and to permit persons to whom the
|
||||||
|
* Software is furnished to do so, subject to the following conditions:
|
||||||
|
*
|
||||||
|
* The above copyright notice and this permission notice shall be included in
|
||||||
|
* all copies or substantial portions of the Software.
|
||||||
|
*
|
||||||
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||||
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||||
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||||
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||||
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||||||
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
||||||
|
* DEALINGS IN THE SOFTWARE.
|
||||||
|
*
|
||||||
|
*****************************************************************************/
|
||||||
|
#include "tim/vx/context.h"
|
||||||
|
#include "tim/vx/graph.h"
|
||||||
|
#include "tim/vx/ops/resize1d.h"
|
||||||
|
|
||||||
|
#include "gtest/gtest.h"
|
||||||
|
|
||||||
|
namespace {
|
||||||
|
template<typename T>
|
||||||
|
::testing::AssertionResult ArraysMatch(const std::vector<T>& expected,
|
||||||
|
const std::vector<T>& actual,
|
||||||
|
T abs_error){
|
||||||
|
for (size_t i = 0; i < expected.size(); ++i){
|
||||||
|
EXPECT_NEAR(expected[i], actual[i], abs_error) << "at index:" << i;
|
||||||
|
}
|
||||||
|
|
||||||
|
return ::testing::AssertionSuccess();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST(Resize1d, shape_4_2_1_float_nearest_whcn) {
|
||||||
|
auto ctx = tim::vx::Context::Create();
|
||||||
|
auto graph = ctx->CreateGraph();
|
||||||
|
|
||||||
|
tim::vx::ShapeType input_shape({4, 2, 1});
|
||||||
|
tim::vx::ShapeType output_shape({2, 2, 1});
|
||||||
|
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32,
|
||||||
|
input_shape, tim::vx::TensorAttribute::INPUT);
|
||||||
|
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32,
|
||||||
|
output_shape, tim::vx::TensorAttribute::OUTPUT);
|
||||||
|
|
||||||
|
auto input_tensor = graph->CreateTensor(input_spec);
|
||||||
|
auto output_tensor = graph->CreateTensor(output_spec);
|
||||||
|
|
||||||
|
std::vector<float> in_data = {
|
||||||
|
1.f, 2.f, 3.f, 4.f,
|
||||||
|
5.f, 6.f, 7.f, 8.f,
|
||||||
|
};
|
||||||
|
std::vector<float> golden = {
|
||||||
|
1.f, 3.f,
|
||||||
|
5.f, 7.f,
|
||||||
|
};
|
||||||
|
|
||||||
|
EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(), in_data.size() * sizeof(float)));
|
||||||
|
|
||||||
|
auto op = graph->CreateOperation<tim::vx::ops::Resize1d>(
|
||||||
|
tim::vx::ResizeType::NEAREST_NEIGHBOR, 0.6, false, false, 0);
|
||||||
|
(*op).BindInputs({input_tensor}).BindOutputs({output_tensor});
|
||||||
|
|
||||||
|
EXPECT_TRUE(graph->Compile());
|
||||||
|
EXPECT_TRUE(graph->Run());
|
||||||
|
|
||||||
|
std::vector<float> output(golden.size() * sizeof(float));
|
||||||
|
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
|
||||||
|
EXPECT_TRUE(ArraysMatch(golden, output, 1e-5f));
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST(Resize1d, shape_5_1_1_uint8_bilinear_align_corners_whcn) {
|
||||||
|
auto ctx = tim::vx::Context::Create();
|
||||||
|
auto graph = ctx->CreateGraph();
|
||||||
|
|
||||||
|
tim::vx::ShapeType input_shape({5, 1, 1});
|
||||||
|
tim::vx::ShapeType output_shape({7, 1, 1});
|
||||||
|
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32,
|
||||||
|
input_shape, tim::vx::TensorAttribute::INPUT);
|
||||||
|
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32,
|
||||||
|
output_shape, tim::vx::TensorAttribute::OUTPUT);
|
||||||
|
|
||||||
|
auto input_tensor = graph->CreateTensor(input_spec);
|
||||||
|
auto output_tensor = graph->CreateTensor(output_spec);
|
||||||
|
|
||||||
|
std::vector<float> in_data = {
|
||||||
|
1.f, 2.f, 3.f, 4.f, 5.f,
|
||||||
|
};
|
||||||
|
std::vector<float> golden = {
|
||||||
|
1.f, 1.66666f, 2.33333f, 3.f,
|
||||||
|
3.66666, 4.33333f, 5.f
|
||||||
|
};
|
||||||
|
|
||||||
|
EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(), in_data.size() * sizeof(float)));
|
||||||
|
|
||||||
|
auto op = graph->CreateOperation<tim::vx::ops::Resize1d>(
|
||||||
|
tim::vx::ResizeType::BILINEAR, 0, true, false, 7);
|
||||||
|
(*op).BindInputs({input_tensor}).BindOutputs({output_tensor});
|
||||||
|
|
||||||
|
EXPECT_TRUE(graph->Compile());
|
||||||
|
EXPECT_TRUE(graph->Run());
|
||||||
|
|
||||||
|
std::vector<float> output(golden.size() * sizeof(float));
|
||||||
|
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
|
||||||
|
EXPECT_TRUE(ArraysMatch(golden, output, 1e-5f));
|
||||||
|
}
|
||||||
Loading…
Reference in New Issue