Support layout inference for ops (#77)
Signed-off-by: yuenan.li <yuenan.li@verisilicon.com> Co-authored-by: yuenan.li <yuenan.li@verisilicon.com>
This commit is contained in:
parent
a1ba85691a
commit
fae5cede7a
|
|
@ -142,7 +142,7 @@ class Tensor {
|
|||
virtual const ShapeType& GetShape() = 0;
|
||||
virtual DataType GetDataType() = 0;
|
||||
virtual const Quantization& GetQuantization() = 0;
|
||||
virtual const TensorSpec& GetSpec() = 0;
|
||||
virtual TensorSpec& GetSpec() = 0;
|
||||
virtual uint32_t GetId() = 0;
|
||||
virtual bool CopyDataToTensor(const void* data, uint32_t size_in_bytes = 0) = 0;
|
||||
virtual bool CopyDataFromTensor(void* data) = 0;
|
||||
|
|
|
|||
|
|
@ -45,6 +45,11 @@
|
|||
#include "ops/reduce_layout_inference.h"
|
||||
#include "ops/fullyconnected_layout_inference.h"
|
||||
#include "ops/resize_layout_inference.h"
|
||||
#include "ops/split_layout_inference.h"
|
||||
#include "ops/stridedslice_layout_inference.h"
|
||||
#include "ops/lrn_layout_inference.h"
|
||||
#include "ops/l2normalization_layout_inference.h"
|
||||
#include "ops/addn_layout_inference.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <deque>
|
||||
|
|
@ -211,6 +216,12 @@ std::vector<std::shared_ptr<vx::Tensor>> HandleLayoutInfer(
|
|||
REGIST_REDUCE_LAYOUT_INFERENCE(VSI_NN_OP_REDUCE);
|
||||
REGIST_LAYOUT_INFERENCE(VSI_NN_OP_FCL2, FullyConnected);
|
||||
REGIST_LAYOUT_INFERENCE(VSI_NN_OP_RESIZE, Resize);
|
||||
REGIST_LAYOUT_INFERENCE(VSI_NN_OP_SPLIT, Split);
|
||||
REGIST_LAYOUT_INFERENCE(VSI_NN_OP_STRIDED_SLICE, StridedSlice);
|
||||
REGIST_LAYOUT_INFERENCE(VSI_NN_OP_LRN2, LRN);
|
||||
REGIST_LAYOUT_INFERENCE(VSI_NN_OP_L2_NORMALIZE, L2Normalization);
|
||||
REGIST_LAYOUT_INFERENCE(VSI_NN_OP_ADDN, AddN);
|
||||
REGIST_LAYOUT_INFERENCE(VSI_NN_OP_PRELU, PRelu);
|
||||
default:
|
||||
VSILOGW("Op %d: Default layout inference pass.", op_id);
|
||||
assert(false);
|
||||
|
|
|
|||
|
|
@ -80,7 +80,29 @@ class LeakyReluLayoutInfer : public OpLayoutInfer {
|
|||
}
|
||||
};
|
||||
|
||||
// TODO(yzw): Add Prelu
|
||||
class PReluLayoutInfer : public OpLayoutInfer {
|
||||
public:
|
||||
PReluLayoutInfer(
|
||||
const std::shared_ptr<vx::Operation> op,
|
||||
std::shared_ptr<layout_inference_impl::LayoutInferContext>& context)
|
||||
: OpLayoutInfer(op, context) {}
|
||||
|
||||
void OnInputs(
|
||||
std::vector<std::shared_ptr<vx::Tensor>>& next_tensors) override {
|
||||
ReverseInputsPermuteVector();
|
||||
auto src_input = op_->impl()->InputsTensor()[0];
|
||||
auto input_pv = context_->GetPermuteVector(src_input);
|
||||
auto prelu = context_->infer_graph_->CreateOperation<vx::ops::Prelu>(
|
||||
op_->impl()->node()->nn_param.prelu.axis);
|
||||
auto out_infer = CreateOutputsTensor(input_pv);
|
||||
for (const auto& i_src : op_->impl()->InputsTensor()) {
|
||||
(*prelu).BindInput(context_->GetMapedTensor(i_src));
|
||||
}
|
||||
(*prelu).BindOutput(out_infer[0]);
|
||||
context_->SetPermuteVector(op_->impl()->OutputsTensor()[0], input_pv);
|
||||
next_tensors.push_back(op_->impl()->OutputsTensor()[0]);
|
||||
}
|
||||
};
|
||||
|
||||
using ReluLayoutInfer = ActivationLayoutInfer<vx::ops::Relu>;
|
||||
using Relu1LayoutInfer = ActivationLayoutInfer<vx::ops::Relu1>;
|
||||
|
|
|
|||
|
|
@ -0,0 +1,59 @@
|
|||
/****************************************************************************
|
||||
*
|
||||
* Copyright (c) 2020 Vivante Corporation
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a
|
||||
* copy of this software and associated documentation files (the "Software"),
|
||||
* to deal in the Software without restriction, including without limitation
|
||||
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||||
* and/or sell copies of the Software, and to permit persons to whom the
|
||||
* Software is furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in
|
||||
* all copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||||
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
||||
* DEALINGS IN THE SOFTWARE.
|
||||
*
|
||||
*****************************************************************************/
|
||||
#ifndef TIM_LAYOUT_INFER_ADDN_LAYOUT_INFERENCE_H_
|
||||
#define TIM_LAYOUT_INFER_ADDN_LAYOUT_INFERENCE_H_
|
||||
|
||||
#include "src/tim/transform/ops/op_layout_inference.h"
|
||||
#include "src/tim/vx/operation_private.h"
|
||||
#include "tim/vx/ops/addn.h"
|
||||
|
||||
namespace tim {
|
||||
namespace transform {
|
||||
class AddNLayoutInfer : public OpLayoutInfer {
|
||||
public:
|
||||
AddNLayoutInfer(
|
||||
const std::shared_ptr<vx::Operation>& op,
|
||||
std::shared_ptr<layout_inference_impl::LayoutInferContext>& context)
|
||||
: OpLayoutInfer(op, context) {}
|
||||
void OnInputs(
|
||||
std::vector<std::shared_ptr<vx::Tensor>>& next_tensors) override {
|
||||
auto required_pv = AlignPermuteVectorForMutilInputs();
|
||||
uint32_t num_inputs = op_->impl()->input_cnt_;
|
||||
|
||||
auto addn =
|
||||
context_->infer_graph_->CreateOperation<vx::ops::AddN>(num_inputs);
|
||||
|
||||
for (const auto& i_src : op_->impl()->InputsTensor()) {
|
||||
(*addn).BindInput(context_->GetMapedTensor(i_src));
|
||||
}
|
||||
auto infer_out = CreateOutputsTensor(required_pv);
|
||||
(*addn).BindOutput(infer_out[0]);
|
||||
|
||||
context_->SetPermuteVector(op_->impl()->OutputsTensor()[0], required_pv);
|
||||
next_tensors.push_back(op_->impl()->OutputsTensor()[0]);
|
||||
}
|
||||
};
|
||||
} // namespace transform
|
||||
} // namespace tim
|
||||
#endif
|
||||
|
|
@ -42,7 +42,7 @@ class ElementWiseLayoutInfer : public OpLayoutInfer {
|
|||
|
||||
void OnInputs(
|
||||
std::vector<std::shared_ptr<vx::Tensor>>& next_tensors) override {
|
||||
auto required_pv = AlignPermuteVectorForMutilInputs();
|
||||
auto required_pv = AlignPermuteVectorForElementWise();
|
||||
auto elementwise = context_->infer_graph_->CreateOperation<OpType>();
|
||||
for (const auto& i_src : op_->impl()->InputsTensor()) {
|
||||
(*elementwise).BindInput(context_->GetMapedTensor(i_src));
|
||||
|
|
@ -63,7 +63,7 @@ class MultiplyLayoutInfer : public OpLayoutInfer {
|
|||
|
||||
void OnInputs(
|
||||
std::vector<std::shared_ptr<vx::Tensor>>& next_tensors) override {
|
||||
auto required_pv = AlignPermuteVectorForMutilInputs();
|
||||
auto required_pv = AlignPermuteVectorForElementWise();
|
||||
auto multiply =
|
||||
context_->infer_graph_->CreateOperation<tim::vx::ops::Multiply>(
|
||||
op_->impl()->node()->nn_param.multiply.scale);
|
||||
|
|
|
|||
|
|
@ -0,0 +1,59 @@
|
|||
/****************************************************************************
|
||||
*
|
||||
* Copyright (c) 2020 Vivante Corporation
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a
|
||||
* copy of this software and associated documentation files (the "Software"),
|
||||
* to deal in the Software without restriction, including without limitation
|
||||
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||||
* and/or sell copies of the Software, and to permit persons to whom the
|
||||
* Software is furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in
|
||||
* all copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||||
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
||||
* DEALINGS IN THE SOFTWARE.
|
||||
*
|
||||
*****************************************************************************/
|
||||
#ifndef TIM_LAYOUT_INFER_L2_NORMALIZATION_LAYOUT_INFERENCE_H_
|
||||
#define TIM_LAYOUT_INFER_L2_NORMALIZATION_LAYOUT_INFERENCE_H_
|
||||
|
||||
#include "src/tim/transform/ops/op_layout_inference.h"
|
||||
#include "src/tim/vx/operation_private.h"
|
||||
#include "tim/vx/ops/l2normalization.h"
|
||||
|
||||
namespace tim {
|
||||
namespace transform {
|
||||
class L2NormalizationLayoutInfer : public OpLayoutInfer {
|
||||
public:
|
||||
L2NormalizationLayoutInfer(
|
||||
const std::shared_ptr<vx::Operation>& op,
|
||||
std::shared_ptr<layout_inference_impl::LayoutInferContext>& context)
|
||||
: OpLayoutInfer(op, context) {}
|
||||
void OnInputs(
|
||||
std::vector<std::shared_ptr<vx::Tensor>>& next_tensors) override {
|
||||
auto src_input = op_->impl()->InputsTensor()[0];
|
||||
auto input_pv = context_->GetPermuteVector(src_input);
|
||||
|
||||
int32_t axis =
|
||||
MapAxis(input_pv->AsStdVec(), op_->impl()->node()->nn_param.lrn.axis);
|
||||
|
||||
auto l2norm =
|
||||
context_->infer_graph_->CreateOperation<vx::ops::L2Normalization>(axis);
|
||||
auto infer_out = CreateOutputsTensor(input_pv);
|
||||
(*l2norm).BindInput(context_->GetMapedTensor(src_input));
|
||||
(*l2norm).BindOutput(infer_out[0]);
|
||||
|
||||
context_->SetPermuteVector(op_->impl()->OutputsTensor()[0], input_pv);
|
||||
next_tensors.push_back(op_->impl()->OutputsTensor()[0]);
|
||||
}
|
||||
};
|
||||
} // namespace transform
|
||||
} // namespace tim
|
||||
#endif
|
||||
|
|
@ -0,0 +1,65 @@
|
|||
/****************************************************************************
|
||||
*
|
||||
* Copyright (c) 2020 Vivante Corporation
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a
|
||||
* copy of this software and associated documentation files (the "Software"),
|
||||
* to deal in the Software without restriction, including without limitation
|
||||
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||||
* and/or sell copies of the Software, and to permit persons to whom the
|
||||
* Software is furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in
|
||||
* all copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||||
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
||||
* DEALINGS IN THE SOFTWARE.
|
||||
*
|
||||
*****************************************************************************/
|
||||
#ifndef TIM_LAYOUT_INFER_LRN_LAYOUT_INFERENCE_H_
|
||||
#define TIM_LAYOUT_INFER_LRN_LAYOUT_INFERENCE_H_
|
||||
|
||||
#include "tim/vx/ops/localresponsenormalization.h"
|
||||
|
||||
#include "src/tim/transform/ops/op_layout_inference.h"
|
||||
#include "src/tim/vx/operation_private.h"
|
||||
|
||||
namespace tim {
|
||||
namespace transform {
|
||||
class LRNLayoutInfer : public OpLayoutInfer {
|
||||
public:
|
||||
LRNLayoutInfer(
|
||||
const std::shared_ptr<vx::Operation>& op,
|
||||
std::shared_ptr<layout_inference_impl::LayoutInferContext>& context)
|
||||
: OpLayoutInfer(op, context) {}
|
||||
void OnInputs(
|
||||
std::vector<std::shared_ptr<vx::Tensor>>& next_tensors) override {
|
||||
auto src_input = op_->impl()->InputsTensor()[0];
|
||||
auto input_pv = context_->GetPermuteVector(src_input);
|
||||
|
||||
uint32_t size = op_->impl()->node()->nn_param.lrn.size;
|
||||
float alpha = op_->impl()->node()->nn_param.lrn.alpha;
|
||||
float beta = op_->impl()->node()->nn_param.lrn.beta;
|
||||
float bias = op_->impl()->node()->nn_param.lrn.bias;
|
||||
int32_t axis =
|
||||
MapAxis(input_pv->AsStdVec(), op_->impl()->node()->nn_param.lrn.axis);
|
||||
|
||||
auto lrn = context_->infer_graph_
|
||||
->CreateOperation<vx::ops::LocalResponseNormalization>(
|
||||
size, alpha, beta, bias, axis);
|
||||
auto infer_out = CreateOutputsTensor(input_pv);
|
||||
(*lrn).BindInput(context_->GetMapedTensor(src_input));
|
||||
(*lrn).BindOutput(infer_out[0]);
|
||||
|
||||
context_->SetPermuteVector(op_->impl()->OutputsTensor()[0], input_pv);
|
||||
next_tensors.push_back(op_->impl()->OutputsTensor()[0]);
|
||||
}
|
||||
};
|
||||
} // namespace transform
|
||||
} // namespace tim
|
||||
#endif
|
||||
|
|
@ -180,7 +180,7 @@ OpLayoutInfer::AlignPermuteVectorForMutilInputs() {
|
|||
: perm_out = PermuteConstTensor(i_src, required_pv);
|
||||
} else {
|
||||
auto final_pv =
|
||||
context_->GetPermuteVector(i_src)->Reverse()->Add(required_pv);
|
||||
context_->GetPermuteVector(i_src)->Reverse()->Add(required_pv);
|
||||
final_pv->IsAligned() ? perm_out = context_->GetMapedTensor(i_src)
|
||||
: perm_out = InsertPermute(
|
||||
context_->GetMapedTensor(i_src), final_pv);
|
||||
|
|
@ -192,6 +192,49 @@ OpLayoutInfer::AlignPermuteVectorForMutilInputs() {
|
|||
return required_pv;
|
||||
}
|
||||
|
||||
std::shared_ptr<IPermuteVector>
|
||||
OpLayoutInfer::AlignPermuteVectorForElementWise() {
|
||||
auto src_inputs = op_->impl()->InputsTensor();
|
||||
std::shared_ptr<IPermuteVector> required_pv = nullptr;
|
||||
std::shared_ptr<vx::Tensor> ref_input;
|
||||
for (const auto& in : src_inputs) {
|
||||
if (!in->IsConstTensor()) {
|
||||
required_pv = context_->GetPermuteVector(in);
|
||||
ref_input = in;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
for (auto i_src : src_inputs) {
|
||||
std::shared_ptr<vx::Tensor> perm_out;
|
||||
if (i_src->IsConstTensor()) {
|
||||
if (required_pv->IsAligned()) {
|
||||
perm_out = context_->infer_graph_->CreateTensor(i_src->GetSpec(),
|
||||
i_src->GetDataRef());
|
||||
} else if (i_src->GetShape().size() == required_pv->Rank()) {
|
||||
perm_out = PermuteConstTensor(i_src, required_pv);
|
||||
// need shape expansion
|
||||
} else {
|
||||
auto ref_shape = ref_input->GetShape();
|
||||
auto origin_shape = i_src->GetShape();
|
||||
auto expanded_shape = GetExpandedShape(ref_shape, origin_shape);
|
||||
i_src->GetSpec().SetShape(expanded_shape);
|
||||
perm_out = PermuteConstTensor(i_src, required_pv);
|
||||
}
|
||||
} else {
|
||||
auto final_pv =
|
||||
context_->GetPermuteVector(i_src)->Reverse()->Add(required_pv);
|
||||
final_pv->IsAligned()
|
||||
? perm_out = context_->GetMapedTensor(i_src)
|
||||
: perm_out = InsertPermute(context_->GetMapedTensor(i_src), final_pv);
|
||||
}
|
||||
context_->UpdateTensorMap(i_src, perm_out);
|
||||
context_->SetPermuteVector(i_src, required_pv);
|
||||
}
|
||||
return required_pv;
|
||||
}
|
||||
|
||||
|
||||
void OpLayoutInfer::ReverseInputsPermuteVector() {
|
||||
for (const auto& i_src : op_->impl()->InputsTensor()) {
|
||||
std::shared_ptr<vx::Tensor> perm_out;
|
||||
|
|
@ -213,6 +256,21 @@ void OpLayoutInfer::ReverseInputsPermuteVector() {
|
|||
}
|
||||
}
|
||||
|
||||
std::vector<uint32_t> OpLayoutInfer::GetExpandedShape(
|
||||
const std::vector<uint32_t>& ref_shape,
|
||||
const std::vector<uint32_t>& origin_shape) {
|
||||
std::vector<uint32_t> expanded_shape;
|
||||
for (uint32_t i = 0, j = 0; i < ref_shape.size(); ++i) {
|
||||
if (ref_shape[i] == origin_shape[j] && j < origin_shape.size()) {
|
||||
expanded_shape.push_back(origin_shape[j]);
|
||||
++j;
|
||||
} else {
|
||||
expanded_shape.push_back(1);
|
||||
}
|
||||
}
|
||||
return expanded_shape;
|
||||
}
|
||||
|
||||
bool OpLayoutInfer::TransposeConstTensorData(
|
||||
const std::shared_ptr<vx::Tensor>& input,
|
||||
const std::shared_ptr<IPermuteVector>& pv, std::vector<uint8_t>& out_data) {
|
||||
|
|
@ -265,16 +323,29 @@ std::shared_ptr<vx::Tensor> OpLayoutInfer::PermuteConstTensor(
|
|||
return context_->infer_graph_->CreateTensor(dst_spec, data.data());
|
||||
}
|
||||
|
||||
std::vector<uint32_t> OpLayoutInfer::MapPadding(const std::vector<uint32_t>& perm,
|
||||
const std::vector<uint32_t>& padding) {
|
||||
assert(perm.size() == padding.size());
|
||||
std::vector<uint32_t> r(padding.size());
|
||||
std::vector<uint32_t> OpLayoutInfer::MapMultipleAxis(
|
||||
const std::vector<uint32_t>& perm, const std::vector<uint32_t>& axises) {
|
||||
assert(perm.size() == axises.size());
|
||||
std::vector<uint32_t> r(axises.size());
|
||||
|
||||
for (uint32_t i = 0; i < padding.size(); ++i) {
|
||||
r[i] = padding[perm[i]];
|
||||
for (uint32_t i = 0; i < axises.size(); ++i) {
|
||||
r[i] = axises[perm[i]];
|
||||
}
|
||||
|
||||
return r;
|
||||
}
|
||||
|
||||
std::vector<int32_t> OpLayoutInfer::MapMultipleAxis(
|
||||
const std::vector<uint32_t>& perm, const std::vector<int32_t>& axises) {
|
||||
assert(perm.size() == axises.size());
|
||||
std::vector<int32_t> r(axises.size());
|
||||
|
||||
for (uint32_t i = 0; i < axises.size(); ++i) {
|
||||
r[i] = axises[perm[i]];
|
||||
}
|
||||
|
||||
return r;
|
||||
}
|
||||
|
||||
} // namespace transform
|
||||
} // namespace tim
|
||||
|
|
@ -71,8 +71,14 @@ class OpLayoutInfer {
|
|||
|
||||
std::shared_ptr<IPermuteVector> AlignPermuteVectorForMutilInputs();
|
||||
|
||||
std::shared_ptr<IPermuteVector> AlignPermuteVectorForElementWise();
|
||||
|
||||
void ReverseInputsPermuteVector();
|
||||
|
||||
std::vector<uint32_t> GetExpandedShape(
|
||||
const std::vector<uint32_t>& ref_shape,
|
||||
const std::vector<uint32_t>& origin_shape);
|
||||
|
||||
bool TransposeConstTensorData(const std::shared_ptr<vx::Tensor>& input,
|
||||
const std::shared_ptr<IPermuteVector>& pv,
|
||||
std::vector<uint8_t>& out_data);
|
||||
|
|
@ -81,8 +87,10 @@ class OpLayoutInfer {
|
|||
const std::shared_ptr<vx::Tensor>& input,
|
||||
const std::shared_ptr<IPermuteVector>& pv);
|
||||
|
||||
std::vector<uint32_t> MapPadding(const std::vector<uint32_t>& perm,
|
||||
const std::vector<uint32_t>& padding);
|
||||
std::vector<uint32_t> MapMultipleAxis(const std::vector<uint32_t>& perm,
|
||||
const std::vector<uint32_t>& axises);
|
||||
std::vector<int32_t> MapMultipleAxis(const std::vector<uint32_t>& perm,
|
||||
const std::vector<int32_t>& axises);
|
||||
|
||||
protected:
|
||||
const std::shared_ptr<vx::Operation> op_;
|
||||
|
|
|
|||
|
|
@ -54,8 +54,8 @@ class PadLayoutInfer : public OpLayoutInfer {
|
|||
int32_t pad_value = op_->impl()->node()->nn_param.pad.const_val;
|
||||
|
||||
if (!input_pv->IsAligned()) {
|
||||
front_size = MapPadding(input_pv->AsStdVec(), front_size);
|
||||
back_size = MapPadding(input_pv->AsStdVec(), back_size);
|
||||
front_size = MapMultipleAxis(input_pv->AsStdVec(), front_size);
|
||||
back_size = MapMultipleAxis(input_pv->AsStdVec(), back_size);
|
||||
}
|
||||
|
||||
auto pad = context_->infer_graph_->CreateOperation<vx::ops::Pad>(
|
||||
|
|
|
|||
|
|
@ -0,0 +1,64 @@
|
|||
/****************************************************************************
|
||||
*
|
||||
* Copyright (c) 2020 Vivante Corporation
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a
|
||||
* copy of this software and associated documentation files (the "Software"),
|
||||
* to deal in the Software without restriction, including without limitation
|
||||
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||||
* and/or sell copies of the Software, and to permit persons to whom the
|
||||
* Software is furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in
|
||||
* all copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||||
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
||||
* DEALINGS IN THE SOFTWARE.
|
||||
*
|
||||
*****************************************************************************/
|
||||
#ifndef TIM_LAYOUT_INFER_SPLIT_LAYOUT_INFERENCE_H_
|
||||
#define TIM_LAYOUT_INFER_SPLIT_LAYOUT_INFERENCE_H_
|
||||
|
||||
#include "tim/vx/ops/split.h"
|
||||
|
||||
#include "src/tim/transform/ops/op_layout_inference.h"
|
||||
#include "src/tim/transform/permute_vector.h"
|
||||
#include "src/tim/vx/operation_private.h"
|
||||
|
||||
namespace tim {
|
||||
namespace transform {
|
||||
class SplitLayoutInfer : public OpLayoutInfer {
|
||||
public:
|
||||
SplitLayoutInfer(
|
||||
const std::shared_ptr<vx::Operation> op,
|
||||
std::shared_ptr<layout_inference_impl::LayoutInferContext>& context)
|
||||
: OpLayoutInfer(op, context) {}
|
||||
void OnInputs(
|
||||
std::vector<std::shared_ptr<vx::Tensor>>& next_tensors) override {
|
||||
auto input_tensor = op_->impl()->InputsTensor()[0];
|
||||
uint32_t slices_num = op_->impl()->node()->nn_param.split.slices_num;
|
||||
std::vector<uint32_t> slices(slices_num);
|
||||
memcpy(slices.data(), op_->impl()->node()->nn_param.split.slices,
|
||||
slices_num * sizeof(uint32_t));
|
||||
auto input_pv = context_->GetPermuteVector(input_tensor);
|
||||
uint32_t axis =
|
||||
MapAxis(input_pv->AsStdVec(), op_->impl()->node()->nn_param.split.axis);
|
||||
auto split =
|
||||
context_->infer_graph_->CreateOperation<vx::ops::Split>(axis, slices);
|
||||
auto infer_out = CreateOutputsTensor(input_pv);
|
||||
(*split).BindInput(context_->GetMapedTensor(input_tensor));
|
||||
(*split).BindOutputs(infer_out);
|
||||
for (const auto& out : op_->impl()->OutputsTensor()) {
|
||||
context_->SetPermuteVector(out, input_pv);
|
||||
next_tensors.push_back(out);
|
||||
}
|
||||
}
|
||||
};
|
||||
} // namespace transform
|
||||
} // namespace tim
|
||||
#endif
|
||||
|
|
@ -0,0 +1,87 @@
|
|||
/****************************************************************************
|
||||
*
|
||||
* Copyright (c) 2020 Vivante Corporation
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a
|
||||
* copy of this software and associated documentation files (the "Software"),
|
||||
* to deal in the Software without restriction, including without limitation
|
||||
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||||
* and/or sell copies of the Software, and to permit persons to whom the
|
||||
* Software is furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in
|
||||
* all copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||||
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
||||
* DEALINGS IN THE SOFTWARE.
|
||||
*
|
||||
*****************************************************************************/
|
||||
#ifndef TIM_LAYOUT_INFER_STRIDEDSLICE_LAYOUT_INFERENCE_H_
|
||||
#define TIM_LAYOUT_INFER_STRIDEDSLICE_LAYOUT_INFERENCE_H_
|
||||
|
||||
#include "tim/vx/ops/stridedslice.h"
|
||||
|
||||
#include "src/tim/transform/ops/op_layout_inference.h"
|
||||
#include "src/tim/transform/permute_vector.h"
|
||||
#include "src/tim/vx/operation_private.h"
|
||||
|
||||
namespace tim {
|
||||
namespace transform {
|
||||
class StridedSliceLayoutInfer : public OpLayoutInfer {
|
||||
public:
|
||||
StridedSliceLayoutInfer(
|
||||
const std::shared_ptr<vx::Operation> op,
|
||||
std::shared_ptr<layout_inference_impl::LayoutInferContext>& context)
|
||||
: OpLayoutInfer(op, context) {}
|
||||
void OnInputs(
|
||||
std::vector<std::shared_ptr<vx::Tensor>>& next_tensors) override {
|
||||
auto src_input = op_->impl()->InputsTensor()[0];
|
||||
auto input_pv = context_->GetPermuteVector(src_input);
|
||||
|
||||
int32_t begin_mask = op_->impl()->node()->nn_param.strided_slice.begin_mask;
|
||||
int32_t end_mask = op_->impl()->node()->nn_param.strided_slice.end_mask;
|
||||
int32_t shrink_axis_mask =
|
||||
op_->impl()->node()->nn_param.strided_slice.shrink_axis_mask;
|
||||
uint32_t begin_dims_num =
|
||||
op_->impl()->node()->nn_param.strided_slice.begin_dims_num;
|
||||
std::vector<int32_t> begin_dims(begin_dims_num);
|
||||
memcpy(begin_dims.data(),
|
||||
op_->impl()->node()->nn_param.strided_slice.begin_dims,
|
||||
begin_dims_num * sizeof(uint32_t));
|
||||
uint32_t end_dims_num =
|
||||
op_->impl()->node()->nn_param.strided_slice.end_dims_num;
|
||||
std::vector<int32_t> end_dims(end_dims_num);
|
||||
memcpy(end_dims.data(),
|
||||
op_->impl()->node()->nn_param.strided_slice.end_dims,
|
||||
end_dims_num * sizeof(uint32_t));
|
||||
uint32_t stride_dims_num =
|
||||
op_->impl()->node()->nn_param.strided_slice.stride_dims_num;
|
||||
std::vector<int32_t> stride_dims(stride_dims_num);
|
||||
memcpy(stride_dims.data(),
|
||||
op_->impl()->node()->nn_param.strided_slice.stride_dims,
|
||||
stride_dims_num * sizeof(uint32_t));
|
||||
|
||||
begin_dims = MapMultipleAxis(input_pv->AsStdVec(), begin_dims);
|
||||
end_dims = MapMultipleAxis(input_pv->AsStdVec(), end_dims);
|
||||
stride_dims = MapMultipleAxis(input_pv->AsStdVec(), stride_dims);
|
||||
|
||||
auto strided_slice =
|
||||
context_->infer_graph_->CreateOperation<vx::ops::StridedSlice>(
|
||||
begin_dims, end_dims, stride_dims, begin_mask, end_mask,
|
||||
shrink_axis_mask);
|
||||
auto infer_out = CreateOutputsTensor(input_pv);
|
||||
(*strided_slice).BindInput(context_->GetMapedTensor(src_input));
|
||||
(*strided_slice).BindOutput(infer_out[0]);
|
||||
|
||||
context_->SetPermuteVector(op_->impl()->OutputsTensor()[0], input_pv);
|
||||
next_tensors.push_back(op_->impl()->OutputsTensor()[0]);
|
||||
}
|
||||
};
|
||||
} // namespace transform
|
||||
} // namespace tim
|
||||
#endif
|
||||
|
|
@ -42,7 +42,7 @@ class TensorImpl : public Tensor {
|
|||
const ShapeType& GetShape() { return spec_.shape_; }
|
||||
DataType GetDataType() { return spec_.datatype_; }
|
||||
const Quantization& GetQuantization() { return spec_.quantization_; }
|
||||
const TensorSpec& GetSpec() { return spec_; }
|
||||
TensorSpec& GetSpec() { return spec_; }
|
||||
uint32_t GetId();
|
||||
bool CopyDataToTensor(const void* data, uint32_t size = 0);
|
||||
bool CopyDataFromTensor(void* data);
|
||||
|
|
@ -66,7 +66,7 @@ class TensorPlaceholder : public Tensor {
|
|||
const ShapeType& GetShape() { return spec_.shape_; }
|
||||
DataType GetDataType() { return spec_.datatype_; }
|
||||
const Quantization& GetQuantization() { return spec_.quantization_; }
|
||||
const TensorSpec& GetSpec() { return spec_; }
|
||||
TensorSpec& GetSpec() { return spec_; }
|
||||
uint32_t GetId() { return id_; };
|
||||
bool CopyDataToTensor(const void* data, uint32_t size = 0) {
|
||||
(void)data, void(size);
|
||||
|
|
|
|||
Loading…
Reference in New Issue