Added axis support for layernorm (#602)
Layernormolization can handle non zero axis now Added case to verify layernorm with axis 2 Modify layernorm opjson Type: Code Improvement Signed-off-by: Feiyue Chen <Feiyue.Chen@verisilicon.com>
This commit is contained in:
parent
a64a0f7379
commit
fbfbdd7c83
|
|
@ -3,9 +3,7 @@
|
|||
"parameters":
|
||||
[
|
||||
{"name": "axis",
|
||||
"dtype": "int32_t",
|
||||
"Optional": "true",
|
||||
"default": "0"
|
||||
"dtype": "int32_t"
|
||||
},
|
||||
{"name": "eps",
|
||||
"dtype": "float",
|
||||
|
|
|
|||
|
|
@ -32,7 +32,7 @@ namespace vx {
|
|||
namespace ops {
|
||||
class LayerNormalization : public BuiltinOp {
|
||||
public:
|
||||
LayerNormalization(Graph* graph, int32_t axis = 0, float eps = 1e-5f);
|
||||
LayerNormalization(Graph* graph, int32_t axis, float eps = 1e-5f);
|
||||
|
||||
std::shared_ptr<Operation> Clone(std::shared_ptr<Graph>& graph) const override;
|
||||
|
||||
|
|
|
|||
|
|
@ -32,11 +32,7 @@ namespace vx {
|
|||
namespace ops {
|
||||
LayerNormalization::LayerNormalization(Graph* graph, int32_t axis, float eps)
|
||||
: BuiltinOp(graph, VSI_NN_OP_LAYER_NORM), axis_(axis), eps_(eps) {
|
||||
// Layer normalization shares the parameters of instance normalization.
|
||||
if (axis != 0) {
|
||||
VSILOGE("Layer norm only support axis 0.");
|
||||
assert(false);
|
||||
}
|
||||
this->impl()->node()->nn_param.layernorm.axis = axis_;
|
||||
this->impl()->node()->nn_param.layernorm.eps = eps_;
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -142,6 +142,61 @@ TEST(LayerNorm, axis_0_shape_2_3_6_1_float) {
|
|||
EXPECT_TRUE(ArraysMatch(golden, output, 1e-5f));
|
||||
}
|
||||
|
||||
TEST(LayerNorm, axis_2_shape_4_2_3_1_float) {
|
||||
auto ctx = tim::vx::Context::Create();
|
||||
auto graph = ctx->CreateGraph();
|
||||
|
||||
tim::vx::ShapeType io_shape({4, 2, 3, 1});
|
||||
tim::vx::ShapeType param_shape({1,1,3,1});
|
||||
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32,
|
||||
io_shape, tim::vx::TensorAttribute::INPUT);
|
||||
tim::vx::TensorSpec param_spec(tim::vx::DataType::FLOAT32,
|
||||
param_shape, tim::vx::TensorAttribute::INPUT);
|
||||
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32,
|
||||
io_shape, tim::vx::TensorAttribute::OUTPUT);
|
||||
|
||||
auto input_tensor = graph->CreateTensor(input_spec);
|
||||
auto gamma_tensor = graph->CreateTensor(param_spec);
|
||||
auto beta_tensor = graph->CreateTensor(param_spec);
|
||||
auto output_tensor = graph->CreateTensor(output_spec);
|
||||
|
||||
std::vector<float> in_data = {
|
||||
1, 2, 3, 4,
|
||||
5, 6, 7, 8,
|
||||
9, 10, 11, 12,
|
||||
13, 14, 15, 16,
|
||||
17, 18, 19, 20,
|
||||
21, 22, 23, 24};
|
||||
std::vector<float> gamma = {
|
||||
1.0f, 1.0f, 1.0f
|
||||
};
|
||||
std::vector<float> beta = {
|
||||
.0f, .0f, .0f
|
||||
};
|
||||
std::vector<float> golden = {
|
||||
-1.22473, -1.22473, -1.22473, -1.22473,
|
||||
-1.22473, -1.22473, -1.22473, -1.22473,
|
||||
0, 0, 0, 0,
|
||||
0, 0, 0, 0,
|
||||
1.22473, 1.22473, 1.22473, 1.22473,
|
||||
1.22473, 1.22473, 1.22473, 1.22473
|
||||
};
|
||||
|
||||
EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(), in_data.size() * sizeof(float)));
|
||||
EXPECT_TRUE(gamma_tensor->CopyDataToTensor(gamma.data(), gamma.size() * sizeof(float)));
|
||||
EXPECT_TRUE(beta_tensor->CopyDataToTensor(beta.data(), beta.size() * sizeof(float)));
|
||||
|
||||
auto op = graph->CreateOperation<tim::vx::ops::LayerNormalization>(2, 0.001);
|
||||
(*op).BindInputs({input_tensor, beta_tensor, gamma_tensor}).BindOutputs({output_tensor});
|
||||
|
||||
EXPECT_TRUE(graph->Compile());
|
||||
EXPECT_TRUE(graph->Run());
|
||||
|
||||
std::vector<float> output(24);
|
||||
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
|
||||
EXPECT_TRUE(ArraysMatch(golden, output, 1e-5f));
|
||||
}
|
||||
|
||||
#if 0
|
||||
// Fail case
|
||||
TEST(LayerNorm, axis_0_shape_3_6_1_uint8) {
|
||||
|
|
|
|||
Loading…
Reference in New Issue