#include "tim/vx/context.h" #include "tim/vx/graph.h" #include "tim/vx/ops/conv2d.h" #include "tim/transform/layout_inference.h" #include "gtest/gtest.h" TEST(LayoutInference, simple_conv2d) { auto ctx = tim::vx::Context::Create(); auto src_graph = ctx->CreateGraph(); tim::vx::ShapeType input_shape({1, 3, 3, 1}); tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, input_shape, tim::vx::TensorAttribute::INPUT); auto input = src_graph->CreateTensor(input_spec); tim::vx::ShapeType kernel_shape({1, 2, 2, 1}); tim::vx::TensorSpec kernel_spec(tim::vx::DataType::FLOAT32, kernel_shape, tim::vx::TensorAttribute::CONSTANT); std::vector kernel_data = { 0.25f, 0.25f, 0.25f, 0.25f}; auto kernel = src_graph->CreateTensor(kernel_spec, kernel_data.data()); tim::vx::ShapeType bias_shape({1}); tim::vx::TensorSpec bias_spec(tim::vx::DataType::FLOAT32, bias_shape, tim::vx::TensorAttribute::CONSTANT); std::vector bias_data = {0.0f}; auto bias = src_graph->CreateTensor(bias_spec, bias_data.data()); tim::vx::ShapeType output_shape({1, 2, 2, 1}); tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, output_shape, tim::vx::TensorAttribute::OUTPUT); auto output = src_graph->CreateTensor(output_spec); auto conv2d = src_graph->CreateOperation( kernel_shape[0], tim::vx::PadType::AUTO, std::array({kernel_shape[2], kernel_shape[1]}), std::array({1, 1}), std::array({0, 0}), std::array({0, 0, 0, 0}), 0, tim::vx::DataLayout::CWHN); (*conv2d).BindInputs({input, kernel, bias}).BindOutput(output); // Do layout inference auto transform = tim::transform::LayoutInference(src_graph, ctx); auto infer_graph = transform.first; auto graph_io_map = transform.second; infer_graph->Compile(); std::vector input_data = {1.0f, 1.0f, 1.0f, 1.0f, 0.5f, 1.0f, 1.0f, 1.0f, 1.0f}; auto infer_input = graph_io_map[src_graph->InputsTensor()[0]]; auto infer_output = graph_io_map[src_graph->OutputsTensor()[0]]; infer_input->CopyDataToTensor(input_data.data(), input_data.size() * sizeof(float)); infer_graph->Run(); std::vector out_data; auto infer_out_shape = infer_output->GetShape(); out_data.resize(infer_out_shape[0] * infer_out_shape[1] * infer_out_shape[2] * infer_out_shape[3]); infer_output->CopyDataFromTensor(out_data.data()); std::vector expect_output = {0.875f, 0.875f, 0.875f, 0.875f}; EXPECT_TRUE(0 == memcmp((void*)out_data.data(), (void*)expect_output.data(), sizeof(float) * out_data.size())); tim::vx::ShapeType expect_shape({1, 2, 2, 1}); EXPECT_EQ(infer_out_shape, expect_shape); } TEST(LayoutInference, weight_as_input_conv2d) { auto ctx = tim::vx::Context::Create(); auto src_graph = ctx->CreateGraph(); tim::vx::ShapeType input_shape({3, 3, 1, 1}); //WHCN tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, input_shape, tim::vx::TensorAttribute::INPUT); auto input = src_graph->CreateTensor(input_spec); tim::vx::ShapeType kernel_shape({1, 2, 2, 1}); //IWHO tim::vx::TensorSpec kernel_spec(tim::vx::DataType::FLOAT32, kernel_shape, tim::vx::TensorAttribute::INPUT); auto kernel = src_graph->CreateTensor(kernel_spec); tim::vx::ShapeType bias_shape({1}); tim::vx::TensorSpec bias_spec(tim::vx::DataType::FLOAT32, bias_shape, tim::vx::TensorAttribute::INPUT); auto bias = src_graph->CreateTensor(bias_spec); tim::vx::ShapeType output_shape({2, 2, 1, 1}); //WHCN tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, output_shape, tim::vx::TensorAttribute::OUTPUT); auto output = src_graph->CreateTensor(output_spec); auto conv2d = src_graph->CreateOperation( 0, tim::vx::PadType::AUTO, std::array({0, 0}), std::array({1, 1}), std::array({1, 1}), std::array({0, 0, 0, 0}), 0, tim::vx::DataLayout::WHCN, tim::vx::DataLayout::IcWHOc); (*conv2d).BindInputs({input, kernel, bias}).BindOutput(output); // Do layout inference auto transform = tim::transform::LayoutInference(src_graph, ctx); auto infer_graph = transform.first; auto graph_io_map = transform.second; infer_graph->Compile(); std::vector input_data = {1.0f, 1.0f, 1.0f, 1.0f, 0.5f, 1.0f, 1.0f, 1.0f, 1.0f}; std::vector kernel_data = {0.25f, 0.25f, 0.25f, 0.25f}; std::vector bias_data = {0.0f}; auto infer_input = graph_io_map[src_graph->InputsTensor()[0]]; auto infer_weight = graph_io_map[src_graph->InputsTensor()[1]]; auto infer_bias = graph_io_map[src_graph->InputsTensor()[2]]; auto infer_output = graph_io_map[src_graph->OutputsTensor()[0]]; infer_input->CopyDataToTensor(input_data.data(), input_data.size() * sizeof(float)); infer_weight->CopyDataToTensor(kernel_data.data(), kernel_data.size() * sizeof(float)); infer_bias->CopyDataToTensor(bias_data.data(), bias_data.size() * sizeof(float)); infer_graph->Run(); std::vector out_data; auto infer_out_shape = infer_output->GetShape(); out_data.resize(infer_out_shape[0] * infer_out_shape[1] * infer_out_shape[2] * infer_out_shape[3]); infer_output->CopyDataFromTensor(out_data.data()); std::vector expect_output = {0.875f, 0.875f, 0.875f, 0.875f}; EXPECT_TRUE(0 == memcmp((void*)out_data.data(), (void*)expect_output.data(), sizeof(float) * out_data.size())); tim::vx::ShapeType expect_shape({2, 2, 1, 1}); EXPECT_EQ(infer_out_shape, expect_shape); }