/**************************************************************************** * * Copyright (c) 2021 Vivante Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. * *****************************************************************************/ #include "tim/vx/context.h" #include "tim/vx/graph.h" #include "tim/vx/ops/logsoftmax.h" #include "gtest/gtest.h" namespace { template ::testing::AssertionResult ArraysMatch(const std::vector& expected, const std::vector& actual, T abs_error){ for (size_t i = 0; i < expected.size(); ++i){ EXPECT_NEAR(expected[i], actual[i], abs_error) << "at index:" << i; } return ::testing::AssertionSuccess(); } } TEST(LogSoftmax, shape_6_1_float_axis_0) { auto ctx = tim::vx::Context::Create(); auto graph = ctx->CreateGraph(); tim::vx::ShapeType io_shape({6, 1}); tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, io_shape, tim::vx::TensorAttribute::INPUT); tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, io_shape, tim::vx::TensorAttribute::OUTPUT); auto input_tensor = graph->CreateTensor(input_spec); auto output_tensor = graph->CreateTensor(output_spec); std::vector in_data = { 2, 3, 4, 5, 6, 7 }; std::vector golden = { -5.4562, -4.4562, -3.4562, -2.4562, -1.4562, -0.4562, }; EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(), in_data.size() * sizeof(float))); auto op = graph->CreateOperation(0); (*op).BindInputs({input_tensor}).BindOutputs({output_tensor}); EXPECT_TRUE(graph->Compile()); EXPECT_TRUE(graph->Run()); std::vector output(golden.size() * sizeof(float)); EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data())); EXPECT_TRUE(ArraysMatch(golden, output, 1e-5f)); } TEST(LogSoftmax, shape_3_6_1_float_axis_1) { auto ctx = tim::vx::Context::Create(); auto graph = ctx->CreateGraph(); tim::vx::ShapeType io_shape({3, 6, 1}); tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, io_shape, tim::vx::TensorAttribute::INPUT); tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, io_shape, tim::vx::TensorAttribute::OUTPUT); auto input_tensor = graph->CreateTensor(input_spec); auto output_tensor = graph->CreateTensor(output_spec); std::vector in_data = { -2.0000, 0.0000, 2.0000, -3.0000, 0.0000, 3.0000, -4.0000, 0.0000, 4.0000, -5.0000, 0.0000, 5.0000, -6.0000, 0.0000, 6.0000, -7.0000, 0.0000, 7.0000, }; std::vector golden = { -0.4561933, -1.7917595, -5.4561934, -1.4561933, -1.7917595, -4.4561934, -2.4561934, -1.7917595, -3.4561934, -3.4561934, -1.7917595, -2.4561934, -4.4561934, -1.7917595, -1.4561933, -5.4561934, -1.7917595, -0.4561933, }; EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(), in_data.size() * sizeof(float))); auto op = graph->CreateOperation(1); (*op).BindInputs({input_tensor}).BindOutputs({output_tensor}); EXPECT_TRUE(graph->Compile()); EXPECT_TRUE(graph->Run()); std::vector output(golden.size() * sizeof(float)); EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data())); EXPECT_TRUE(ArraysMatch(golden, output, 1e-5f)); } TEST(LogSoftmax, shape_3_6_1_uint8_axis_1) { auto ctx = tim::vx::Context::Create(); auto graph = ctx->CreateGraph(); tim::vx::ShapeType io_shape({3, 6, 1}); tim::vx::Quantization input_quant(tim::vx::QuantType::ASYMMETRIC, 1, 2); tim::vx::Quantization output_quant(tim::vx::QuantType::ASYMMETRIC, 1.7917595, 2); tim::vx::TensorSpec input_spec(tim::vx::DataType::UINT8, io_shape, tim::vx::TensorAttribute::INPUT, input_quant); tim::vx::TensorSpec output_spec(tim::vx::DataType::UINT8, io_shape, tim::vx::TensorAttribute::OUTPUT, output_quant); auto input_tensor = graph->CreateTensor(input_spec); auto output_tensor = graph->CreateTensor(output_spec); std::vector in_data = { 0, 2, 4, 0, 2, 4, 0, 2, 4, 0, 2, 4, 0, 2, 4, 0, 2, 4, }; std::vector golden = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, }; EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(), in_data.size())); auto op = graph->CreateOperation(1); (*op).BindInputs({input_tensor}).BindOutputs({output_tensor}); EXPECT_TRUE(graph->Compile()); EXPECT_TRUE(graph->Run()); std::vector output(golden.size()); EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data())); EXPECT_EQ(golden, output); }