/**************************************************************************** * * Copyright (c) 2021 Vivante Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. * *****************************************************************************/ #include "tim/vx/context.h" #include "tim/vx/graph.h" #include "tim/vx/ops/matmul.h" #include "gtest/gtest.h" namespace { template ::testing::AssertionResult ArraysMatch(const std::vector& expected, const std::vector& actual, T abs_error){ for (size_t i = 0; i < expected.size(); ++i){ EXPECT_NEAR(expected[i], actual[i], abs_error) << "at index:" << i; } return ::testing::AssertionSuccess(); } } TEST(Matmul, shape_2_6_shape_6_2_float) { auto ctx = tim::vx::Context::Create(); auto graph = ctx->CreateGraph(); tim::vx::ShapeType a_shape({6, 2}); tim::vx::ShapeType b_shape({2, 6}); tim::vx::ShapeType out_shape({2, 2}); tim::vx::TensorSpec a_spec(tim::vx::DataType::FLOAT32, a_shape, tim::vx::TensorAttribute::INPUT); tim::vx::TensorSpec b_spec(tim::vx::DataType::FLOAT32, b_shape, tim::vx::TensorAttribute::INPUT); tim::vx::TensorSpec out_spec(tim::vx::DataType::FLOAT32, out_shape, tim::vx::TensorAttribute::OUTPUT); auto a_tensor = graph->CreateTensor(a_spec); auto b_tensor = graph->CreateTensor(b_spec); auto out_tensor = graph->CreateTensor(out_spec); std::vector a_data = { 1, 2, 3, 4, 5, 6, -1, -2, -3, -4, -5, -6 }; std::vector b_data = { 6, 5, 4, 3, 2, 1, -6, -5, -4, -3, -2, -1 }; std::vector golden = { -36, -27, 36, 27 }; EXPECT_TRUE(a_tensor->CopyDataToTensor(a_data.data(), a_data.size() * sizeof(float))); EXPECT_TRUE(b_tensor->CopyDataToTensor(b_data.data(), b_data.size() * sizeof(float))); auto op = graph->CreateOperation(); (*op).BindInputs({a_tensor, b_tensor}).BindOutputs({out_tensor}); EXPECT_TRUE(graph->Compile()); EXPECT_TRUE(graph->Run()); std::vector output(golden.size()); EXPECT_TRUE(out_tensor->CopyDataFromTensor(output.data())); EXPECT_TRUE(ArraysMatch(golden, output, 1e-5f)); } TEST(Matmul, shape_2_3_2_shape_2_3_2_float_transpose_b) { auto ctx = tim::vx::Context::Create(); auto graph = ctx->CreateGraph(); tim::vx::ShapeType a_shape({2, 3, 2}); tim::vx::ShapeType b_shape({2, 3, 2}); tim::vx::ShapeType out_shape({3, 3, 2}); tim::vx::TensorSpec a_spec(tim::vx::DataType::FLOAT32, a_shape, tim::vx::TensorAttribute::INPUT); tim::vx::TensorSpec b_spec(tim::vx::DataType::FLOAT32, b_shape, tim::vx::TensorAttribute::INPUT); tim::vx::TensorSpec out_spec(tim::vx::DataType::FLOAT32, out_shape, tim::vx::TensorAttribute::OUTPUT); auto a_tensor = graph->CreateTensor(a_spec); auto b_tensor = graph->CreateTensor(b_spec); auto out_tensor = graph->CreateTensor(out_spec); std::vector a_data = { 1, 2, 3, 4, 5, 6, -1, -2, -3, -4, -5, -6 }; std::vector b_data = { 6, 5, 4, 3, 2, 1, -6, -5, -4, -3, -2, -1 }; std::vector golden = { 16, 10, 4, 38, 24, 10, 60, 38, 16, 16, 10, 4, 38, 24, 10, 60, 38, 16, }; EXPECT_TRUE(a_tensor->CopyDataToTensor(a_data.data(), a_data.size() * sizeof(float))); EXPECT_TRUE(b_tensor->CopyDataToTensor(b_data.data(), b_data.size() * sizeof(float))); auto op = graph->CreateOperation(false, true); (*op).BindInputs({a_tensor, b_tensor}).BindOutputs({out_tensor}); EXPECT_TRUE(graph->Compile()); EXPECT_TRUE(graph->Run()); std::vector output(golden.size() * sizeof(float)); EXPECT_TRUE(out_tensor->CopyDataFromTensor(output.data())); EXPECT_TRUE(ArraysMatch(golden, output, 1e-5f)); } TEST(Matmul, shape_2_3_2_shape_2_3_2_uint8_transpose_a) { auto ctx = tim::vx::Context::Create(); auto graph = ctx->CreateGraph(); tim::vx::ShapeType a_shape({2, 3, 2}); tim::vx::ShapeType b_shape({2, 3, 2}); tim::vx::ShapeType out_shape({2, 2, 2}); tim::vx::Quantization input_quant(tim::vx::QuantType::ASYMMETRIC, 1, 6); tim::vx::Quantization output_quant(tim::vx::QuantType::ASYMMETRIC, 1, 0); tim::vx::TensorSpec a_spec(tim::vx::DataType::UINT8, a_shape, tim::vx::TensorAttribute::INPUT, input_quant); tim::vx::TensorSpec b_spec(tim::vx::DataType::UINT8, b_shape, tim::vx::TensorAttribute::INPUT, input_quant); tim::vx::TensorSpec out_spec(tim::vx::DataType::UINT8, out_shape, tim::vx::TensorAttribute::OUTPUT, output_quant); auto a_tensor = graph->CreateTensor(a_spec); auto b_tensor = graph->CreateTensor(b_spec); auto out_tensor = graph->CreateTensor(out_spec); std::vector a_data = { 7, 8, 9, 10, 11, 12, 5, 4, 3, 2, 1, 0, }; std::vector b_data = { 12, 11, 10, 9, 8, 7, 0, 1, 2, 3, 4, 5, }; std::vector golden = { 28, 19, 40, 28, 28, 19, 40, 28, }; EXPECT_TRUE(a_tensor->CopyDataToTensor(a_data.data(), a_data.size())); EXPECT_TRUE(b_tensor->CopyDataToTensor(b_data.data(), b_data.size())); auto op = graph->CreateOperation(true); (*op).BindInputs({a_tensor, b_tensor}).BindOutputs({out_tensor}); EXPECT_TRUE(graph->Compile()); EXPECT_TRUE(graph->Run()); std::vector output(golden.size()); EXPECT_TRUE(out_tensor->CopyDataFromTensor(output.data())); EXPECT_EQ(golden, output); }