/**************************************************************************** * * Copyright (c) 2020-2023 Vivante Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. * *****************************************************************************/ #ifndef TIM_VX_GRAPH_H_ #define TIM_VX_GRAPH_H_ #ifdef BUILD_WITH_BAZEL #include "vsi_feat_ops_def.h" #endif #ifdef ENABLE_TENSOR_CACHE #include #include #endif #include #include namespace tim { namespace vx { #ifdef ENABLE_TENSOR_CACHE const std::string calculateMd5Secret32(const std::string& src); #endif class Tensor; struct TensorSpec; struct DmaBufferDesc; class Operation; class Graph { public: virtual ~Graph() {} /// Create a tensor with given `TensorSpec` virtual std::shared_ptr CreateTensor(const TensorSpec& spec, const void* data = nullptr) = 0; virtual std::shared_ptr CreateTensor(const TensorSpec& spec, const DmaBufferDesc& dmafd) = 0; /// Create a tensor with given `TensorSpec`. /// spec.attr_ must be TensorAttribute::Input or Output virtual std::shared_ptr CreateIOTensor(const TensorSpec& spec, void* data = nullptr) = 0; /// Create a placeholder tensor for optional inputs of operations virtual std::shared_ptr CreateTensorPlaceHolder() = 0; /// Freeze graph virtual bool Compile() = 0; /// Compile to BinaryGraph virtual bool CompileToBinary(void* buf, size_t* size) = 0; virtual bool Run() = 0; template std::shared_ptr CreateOperation(Params... parameters) { auto op = std::make_shared(this, parameters...); op_vector_.push_back(op); return op; } virtual const std::vector> InputsTensor() const = 0; virtual const std::vector> OutputsTensor() const = 0; virtual void UpdateTensorConsumersMap(const std::shared_ptr& tensor, const Operation* op) = 0; virtual void RenewTensorConsumersMap( const std::shared_ptr& org_tensor, const std::shared_ptr& dst_tensor, const Operation* op) = 0; virtual void UpdateTensorProducerMap(const std::shared_ptr& tensor, const Operation* op) = 0; virtual const std::vector> GetConsumersOp( std::shared_ptr tensor) const = 0; virtual std::shared_ptr GetProducerOp( std::shared_ptr tensor) = 0; virtual void PrintGraph() const = 0; const std::vector> GetConstantInputs() const; protected: std::vector> op_vector_; }; } // namespace vx } // namespace tim #endif /* TIM_VX_GRAPH_H_ */