/**************************************************************************** * * Copyright (c) 2020-2023 Vivante Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. * *****************************************************************************/ #include "tim/vx/context.h" #include "tim/vx/graph.h" #include "tim/vx/ops/conv1d.h" #include "test_utils.h" #include "gtest/gtest.h" TEST(Conv1d, shape_3_6_1_float_ksize_1_stride_1_weights_3_no_bias_wcn) { auto ctx = tim::vx::Context::Create(); auto graph = ctx->CreateGraph(); tim::vx::ShapeType in_shape({3, 6, 1}); tim::vx::ShapeType param_shape({1,6,3}); tim::vx::ShapeType out_shape({3, 3, 1}); tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, in_shape, tim::vx::TensorAttribute::INPUT); tim::vx::TensorSpec param_spec(tim::vx::DataType::FLOAT32, param_shape, tim::vx::TensorAttribute::INPUT); tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, out_shape, tim::vx::TensorAttribute::OUTPUT); auto input_tensor = graph->CreateTensor(input_spec); auto weight_tensor = graph->CreateTensor(param_spec); auto output_tensor = graph->CreateTensor(output_spec); std::vector in_data = { -1, 0, 1, -1.5, 0.5, 1.5, -2, -0.5, 2, -2.5, 0, 2.5, -3, 0.5, 3, -3.5, 0.5, 3.5, }; std::vector weight = { -3, -2, -1.5, 1.5, 2, 3, -2.5, -2, -1.5, 1.5, 2, 2.5, -2.5, -2, 0, 0, 2, 2.5, }; std::vector golden = { -11.25, 2.25, 11.25, -10, 2, 10, -9.25, 1.25, 9.25, }; EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(), in_data.size() * sizeof(float))); EXPECT_TRUE(weight_tensor->CopyDataToTensor(weight.data(), weight.size() * sizeof(float))); auto op = graph->CreateOperation(3, tim::vx::PadType::VALID, 1, 1, 1); (*op).BindInputs({input_tensor, weight_tensor}).BindOutputs({output_tensor}); EXPECT_TRUE(graph->Compile()); EXPECT_TRUE(graph->Run()); std::vector output(golden.size() * sizeof(float)); EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data())); EXPECT_TRUE(ArraysMatch(golden, output, 1e-5f)); } TEST(Conv1d, shape_6_2_1_uint8_ksize_6_stride_1_weights_2_wcn) { auto ctx = tim::vx::Context::Create(); auto graph = ctx->CreateGraph(); tim::vx::ShapeType input_shape({6, 2, 1}); tim::vx::ShapeType output_shape({1, 2, 1}); tim::vx::ShapeType param_shape({6, 2, 2}); tim::vx::ShapeType bias_shape({2}); tim::vx::Quantization input_quant(tim::vx::QuantType::ASYMMETRIC, 0.25, 6); tim::vx::Quantization weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.25, 22); tim::vx::Quantization bias_quant(tim::vx::QuantType::ASYMMETRIC, 0.0625, 0); tim::vx::Quantization output_quant(tim::vx::QuantType::ASYMMETRIC, 0.25, 0); tim::vx::TensorSpec input_spec(tim::vx::DataType::UINT8, input_shape, tim::vx::TensorAttribute::INPUT, input_quant); tim::vx::TensorSpec weight_spec(tim::vx::DataType::UINT8, param_shape, tim::vx::TensorAttribute::CONSTANT, weight_quant); tim::vx::TensorSpec bias_spec(tim::vx::DataType::INT32, bias_shape, tim::vx::TensorAttribute::CONSTANT, bias_quant); tim::vx::TensorSpec output_spec(tim::vx::DataType::UINT8, output_shape, tim::vx::TensorAttribute::OUTPUT, output_quant); auto input_tensor = graph->CreateTensor(input_spec); auto weight_tensor = graph->CreateTensor(weight_spec); auto bias_tensor = graph->CreateTensor(bias_spec); auto output_tensor = graph->CreateTensor(output_spec); std::vector in_data = { 4, 5, 6, 6, 7, 8, 0, 2, 4, 8, 10, 12, }; std::vector weight = { 12, 14, 16, 28, 30, 32, 8, 10, 12, 32, 34, 36, 4, 6, 8, 36, 38, 40, 0, 2, 4, 40, 42, 44, }; std::vector bias = { -20, 100, }; std::vector golden = { 85, 175, }; EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(), in_data.size())); EXPECT_TRUE(weight_tensor->CopyDataToTensor(weight.data(), weight.size())); EXPECT_TRUE(bias_tensor->CopyDataToTensor(bias.data(), bias.size() * sizeof(int32_t))); auto op = graph->CreateOperation(2, tim::vx::PadType::VALID, 6, 1, 1); (*op).BindInputs({input_tensor, weight_tensor, bias_tensor}).BindOutputs({output_tensor}); EXPECT_TRUE(graph->Compile()); EXPECT_TRUE(graph->Run()); std::vector output(golden.size()); EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data())); EXPECT_TRUE(ArraysMatch(golden, output, static_cast(0))); } TEST(Conv1d, shape_6_2_1_uint8_ksize_3_stride_1_pad_1_weights_2_no_bias_wcn) { auto ctx = tim::vx::Context::Create(); auto graph = ctx->CreateGraph(); tim::vx::ShapeType input_shape({6, 2, 1}); tim::vx::ShapeType output_shape({3, 2, 1}); tim::vx::ShapeType param_shape({3, 2, 2}); tim::vx::Quantization input_quant(tim::vx::QuantType::ASYMMETRIC, 0.25, 6); tim::vx::Quantization weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.25, 22); tim::vx::Quantization output_quant(tim::vx::QuantType::ASYMMETRIC, 0.25, 69); tim::vx::TensorSpec input_spec(tim::vx::DataType::UINT8, input_shape, tim::vx::TensorAttribute::INPUT, input_quant); tim::vx::TensorSpec weight_spec(tim::vx::DataType::UINT8, param_shape, tim::vx::TensorAttribute::CONSTANT, weight_quant); tim::vx::TensorSpec output_spec(tim::vx::DataType::UINT8, output_shape, tim::vx::TensorAttribute::OUTPUT, output_quant); auto input_tensor = graph->CreateTensor(input_spec); auto weight_tensor = graph->CreateTensor(weight_spec); auto output_tensor = graph->CreateTensor(output_spec); std::vector in_data = { 4, 4, 6, 6, 8, 8, 0, 2, 4, 8, 10, 12, }; std::vector weight = { 12, 14, 16, 8, 10, 12, 4, 6, 8, 0, 2, 4, }; std::vector golden = { 116, 57, 28, 148, 45, 0, }; EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(), in_data.size())); EXPECT_TRUE(weight_tensor->CopyDataToTensor(weight.data(), weight.size())); std::array pad = {0, 1}; auto op = graph->CreateOperation( 2, tim::vx::PadType::AUTO, 3, 2, 1, pad); (*op).BindInputs({input_tensor, weight_tensor}).BindOutputs({output_tensor}); EXPECT_TRUE(graph->Compile()); EXPECT_TRUE(graph->Run()); std::vector output(golden.size()); EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data())); EXPECT_TRUE(ArraysMatch(golden, output, static_cast(0))); } #if 0 // Fail case // Internal impl conv1d don't support multiplier, need wait for the fix. TEST(Conv1d, shape_7_2_1_uint8_ksize_3_stride_2_multiplier_1_wcn) { auto ctx = tim::vx::Context::Create(); auto graph = ctx->CreateGraph(); tim::vx::ShapeType input_shape({7, 2, 1}); tim::vx::ShapeType output_shape({3, 2, 1}); tim::vx::ShapeType param_shape({3, 1, 2}); tim::vx::ShapeType bias_shape({2}); tim::vx::Quantization input_quant(tim::vx::QuantType::ASYMMETRIC, 0.25, 6); tim::vx::Quantization weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.25, 22); tim::vx::Quantization bias_quant(tim::vx::QuantType::ASYMMETRIC, 0.0625, 0); tim::vx::Quantization output_quant(tim::vx::QuantType::ASYMMETRIC, 0.25, 39); tim::vx::TensorSpec input_spec(tim::vx::DataType::UINT8, input_shape, tim::vx::TensorAttribute::INPUT, input_quant); tim::vx::TensorSpec weight_spec(tim::vx::DataType::UINT8, param_shape, tim::vx::TensorAttribute::CONSTANT, weight_quant); tim::vx::TensorSpec bias_spec(tim::vx::DataType::UINT8, bias_shape, tim::vx::TensorAttribute::CONSTANT, bias_quant); tim::vx::TensorSpec output_spec(tim::vx::DataType::UINT8, output_shape, tim::vx::TensorAttribute::OUTPUT, output_quant); auto input_tensor = graph->CreateTensor(input_spec); auto weight_tensor = graph->CreateTensor(weight_spec); auto bias_tensor = graph->CreateTensor(bias_spec); auto output_tensor = graph->CreateTensor(output_spec); std::vector in_data = { 4, 4, 6, 10, 6, 8, 8, 0, 2, 4, 10, 8, 10, 12, }; std::vector weight = { 12, 14, 16, 8, 10, 12, }; std::vector bias = { -20, 100, }; std::vector golden = { 43, 26, 27, 72, 24, 0, }; EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(), in_data.size())); EXPECT_TRUE(weight_tensor->CopyDataToTensor(weight.data(), weight.size())); EXPECT_TRUE(bias_tensor->CopyDataToTensor(bias.data(), bias.size() * sizeof(int32_t))); auto op = graph->CreateOperation( 2, tim::vx::PadType::AUTO, 3, 2, 1, 1); (*op).BindInputs({input_tensor, weight_tensor, bias_tensor}).BindOutputs({output_tensor}); EXPECT_TRUE(graph->Compile()); EXPECT_TRUE(graph->Run()); std::vector output(golden.size()); EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data())); EXPECT_TRUE(ArraysMatch(golden, output, static_cast(0))); } #endif