/**************************************************************************** * * Copyright (c) 2020-2023 Vivante Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. * *****************************************************************************/ #include "tim/vx/context.h" #include "tim/vx/graph.h" #include "tim/vx/ops/erf.h" #include "gtest/gtest.h" #include "test_utils.h" TEST(Erf, shape_3_2_fp32) { auto ctx = tim::vx::Context::Create(); auto graph = ctx->CreateGraph(); tim::vx::ShapeType in_shape({3, 2}); tim::vx::ShapeType out_shape({3, 2}); tim::vx::TensorSpec in_spec(tim::vx::DataType::FLOAT32, in_shape, tim::vx::TensorAttribute::INPUT); tim::vx::TensorSpec out_spec(tim::vx::DataType::FLOAT32, out_shape, tim::vx::TensorAttribute::OUTPUT); auto in_tensor = graph->CreateTensor(in_spec); auto out_tensor = graph->CreateTensor(out_spec); std::vector in_data = { 1, 2, 3, 0,-1,-2}; std::vector golden = { 0.8427007, 0.9953223, 0.999978, 0 ,-0.8427007,-0.9953223}; EXPECT_TRUE(in_tensor->CopyDataToTensor(in_data.data(), in_data.size() * sizeof(float))); auto op = graph->CreateOperation(); (*op).BindInput(in_tensor).BindOutput(out_tensor); EXPECT_TRUE(graph->Compile()); EXPECT_TRUE(graph->Run()); std::vector output(golden.size()); EXPECT_TRUE(out_tensor->CopyDataFromTensor(output.data())); EXPECT_TRUE(ArraysMatch(golden, output, 1e-2f)); } TEST(Erf, shape_3_2_uint8_Quantized) { auto ctx = tim::vx::Context::Create(); auto graph = ctx->CreateGraph(); tim::vx::ShapeType in_shape({3, 2}); tim::vx::ShapeType out_shape({3, 2}); const float InputMin = -128, InputMax = 127, OutputMin = -128, OutputMax = 127; std::pair scalesAndZp; scalesAndZp = QuantizationParams(InputMin, InputMax); std::vector scalesInput = {scalesAndZp.first}; //scale std::vector zeroPointsInput = {scalesAndZp.second}; //zero point scalesAndZp = QuantizationParams(OutputMin, OutputMax); std::vector scalesOutput = {scalesAndZp.first}; std::vector zeroPointsOutput = {scalesAndZp.second}; tim::vx::Quantization quantInput(tim::vx::QuantType::ASYMMETRIC, 1, scalesInput, zeroPointsInput); tim::vx::Quantization quantOutput(tim::vx::QuantType::ASYMMETRIC, 1, scalesOutput, zeroPointsOutput); tim::vx::TensorSpec input_spec(tim::vx::DataType::UINT8, in_shape, tim::vx::TensorAttribute::INPUT, quantInput); tim::vx::TensorSpec output_spec(tim::vx::DataType::UINT8, out_shape, tim::vx::TensorAttribute::OUTPUT, quantOutput); auto input_tensor = graph->CreateTensor(input_spec); auto output_tensor = graph->CreateTensor(output_spec); std::vector in_data_float = { 1, 2, 3, 0,-1,-2}; std::vector golden_float = { 0.8427007, 0.9953223, 0.999978, 0 ,-0.8427007,-0.9953223}; std::vector input_data = Quantize(in_data_float, scalesInput[0], zeroPointsInput[0]); //Quantification process std::vector golden = Quantize(golden_float, scalesOutput[0], zeroPointsOutput[0]); EXPECT_TRUE( input_tensor->CopyDataToTensor(input_data.data(), input_data.size() * 4)); auto op = graph->CreateOperation(); (*op).BindInput(input_tensor).BindOutput(output_tensor); EXPECT_TRUE(graph->Compile()); EXPECT_TRUE(graph->Run()); std::vector output(golden.size()); EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data())); EXPECT_EQ(golden, output); }