/**************************************************************************** * * Copyright (c) 2020-2023 Vivante Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. * *****************************************************************************/ #include "tim/vx/context.h" #include "tim/vx/graph.h" #include "tim/vx/ops/simple_operations.h" #include "test_utils.h" #include "gtest/gtest.h" #include TEST(Floor, shape_5_1_fp32) { auto ctx = tim::vx::Context::Create(); auto graph = ctx->CreateGraph(); tim::vx::ShapeType io_shape({5, 1}); tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, io_shape, tim::vx::TensorAttribute::INPUT); tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, io_shape, tim::vx::TensorAttribute::OUTPUT); auto input_tensor = graph->CreateTensor(input_spec); auto output_tensor = graph->CreateTensor(output_spec); std::vector in_data = { -2.5, -0.1, 0, 0.55, std::numeric_limits::infinity() }; std::vector golden = {-3, -1, 0, 0, std::numeric_limits::infinity() }; EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(), in_data.size()*4)); auto add = graph->CreateOperation(); (*add).BindInputs({input_tensor}).BindOutputs({output_tensor}); EXPECT_TRUE(graph->Compile()); EXPECT_TRUE(graph->Run()); std::vector output(5, 0); EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data())); EXPECT_EQ(golden, output); } TEST(Round, shape_15_1_fp32) { auto ctx = tim::vx::Context::Create(); auto graph = ctx->CreateGraph(); tim::vx::ShapeType io_shape({15, 1}); tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, io_shape, tim::vx::TensorAttribute::INPUT); tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, io_shape, tim::vx::TensorAttribute::OUTPUT); auto input_tensor = graph->CreateTensor(input_spec); auto output_tensor = graph->CreateTensor(output_spec); std::vector in_data = { 0.1, 0.5, 0.9, 1.2, 1.5, 1.8, 2.3, 2.5, 2.7, -1.1, -1.5, -1.9, -2.2, -2.5, -2.8 }; std::vector golden = {0., 0., 1., 1., 2., 2., 2., 2., 3., -1., -2., -2., -2., -2., -3. }; EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(), in_data.size()*4)); auto add = graph->CreateOperation(); (*add).BindInputs({input_tensor}).BindOutputs({output_tensor}); EXPECT_TRUE(graph->Compile()); EXPECT_TRUE(graph->Run()); std::vector output(15, 0); EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data())); EXPECT_EQ(golden, output); } TEST(Ceil, shape_5_1_fp32) { auto ctx = tim::vx::Context::Create(); auto graph = ctx->CreateGraph(); tim::vx::ShapeType io_shape({5, 1}); tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, io_shape, tim::vx::TensorAttribute::INPUT); tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, io_shape, tim::vx::TensorAttribute::OUTPUT); auto input_tensor = graph->CreateTensor(input_spec); auto output_tensor = graph->CreateTensor(output_spec); std::vector in_data = { -2.5, -0.1, 0, 0.55, std::numeric_limits::infinity() }; std::vector golden = {-2, 0, 0, 1, std::numeric_limits::infinity() }; EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(), in_data.size()*4)); auto add = graph->CreateOperation(); (*add).BindInputs({input_tensor}).BindOutputs({output_tensor}); EXPECT_TRUE(graph->Compile()); EXPECT_TRUE(graph->Run()); std::vector output(5, 0); EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data())); EXPECT_EQ(golden, output); } TEST(Cast, shape_5_1_fp32_to_int32) { auto ctx = tim::vx::Context::Create(); auto graph = ctx->CreateGraph(); tim::vx::ShapeType io_shape({5, 1}); tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, io_shape, tim::vx::TensorAttribute::INPUT); tim::vx::TensorSpec output_spec(tim::vx::DataType::INT32, io_shape, tim::vx::TensorAttribute::OUTPUT); auto input_tensor = graph->CreateTensor(input_spec); auto output_tensor = graph->CreateTensor(output_spec); std::vector in_data = { -2.5, -0.1, 0, 0.55, std::numeric_limits::infinity() }; std::vector golden = {-2, 0, 0, 0, std::numeric_limits::max()}; EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(), in_data.size()*4)); auto add = graph->CreateOperation(); (*add).BindInputs({input_tensor}).BindOutputs({output_tensor}); EXPECT_TRUE(graph->Compile()); EXPECT_TRUE(graph->Run()); std::vector output(5, 0); EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data())); EXPECT_EQ(golden, output); } TEST(DataConvert, quantize_shape_2_3_fp32_to_asym_u8) { auto ctx = tim::vx::Context::Create(); auto graph = ctx->CreateGraph(); tim::vx::ShapeType io_shape({2, 3}); tim::vx::Quantization quant(tim::vx::QuantType::ASYMMETRIC, 0.0036, 0); tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, io_shape, tim::vx::TensorAttribute::INPUT); tim::vx::TensorSpec output_spec(tim::vx::DataType::UINT8, io_shape, tim::vx::TensorAttribute::OUTPUT, quant); auto input_tensor = graph->CreateTensor(input_spec); auto output_tensor = graph->CreateTensor(output_spec); std::vector in_data = {0.8458, 0.6214, 0.4666, 0.6065, 0.8895, 0.1535}; std::vector golden = {235, 173, 130, 168, 247, 43}; auto quantize = graph->CreateOperation(); (*quantize).BindInput(input_tensor).BindOutput(output_tensor); EXPECT_TRUE(graph->Compile()); EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(), in_data.size()*4)); EXPECT_TRUE(graph->Run()); std::vector output(6, 0); EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data())); EXPECT_EQ(golden, output); } TEST(DataConvert, dequantize_shape_2_3_asym_u8_to_fp32) { auto ctx = tim::vx::Context::Create(); auto graph = ctx->CreateGraph(); tim::vx::ShapeType io_shape({2, 3}); tim::vx::Quantization quant(tim::vx::QuantType::ASYMMETRIC, 0.0036, 0); tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, io_shape, tim::vx::TensorAttribute::OUTPUT); tim::vx::TensorSpec input_spec(tim::vx::DataType::UINT8, io_shape, tim::vx::TensorAttribute::INPUT, quant); auto input_tensor = graph->CreateTensor(input_spec); auto output_tensor = graph->CreateTensor(output_spec); std::vector in_data = {235, 173, 130, 168, 247, 43}; std::vector golden = {0.8458, 0.6214, 0.4666, 0.6065, 0.8895, 0.1535}; auto dequantize = graph->CreateOperation(); (*dequantize).BindInput(input_tensor).BindOutput(output_tensor); EXPECT_TRUE(graph->Compile()); EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(), in_data.size())); EXPECT_TRUE(graph->Run()); std::vector output(6, 0); EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data())); for (uint32_t idx = 0; idx < output.size(); idx++) EXPECT_NEAR(golden[idx], output[idx], 0.01f); } TEST(DataConvert, requantize_shape_2_3_asym_u8) { auto ctx = tim::vx::Context::Create(); auto graph = ctx->CreateGraph(); tim::vx::ShapeType io_shape({2, 3}); tim::vx::Quantization in_quant(tim::vx::QuantType::ASYMMETRIC, 0.0036, 0); tim::vx::Quantization out_quant(tim::vx::QuantType::ASYMMETRIC, 0.0036, 10); tim::vx::TensorSpec input_spec(tim::vx::DataType::UINT8, io_shape, tim::vx::TensorAttribute::INPUT, in_quant); tim::vx::TensorSpec output_spec(tim::vx::DataType::UINT8, io_shape, tim::vx::TensorAttribute::OUTPUT, out_quant); auto input_tensor = graph->CreateTensor(input_spec); auto output_tensor = graph->CreateTensor(output_spec); std::vector in_data = {235, 173, 130, 168, 247, 43}; std::vector golden = {245, 183, 140, 178, 255, 53}; auto requantize = graph->CreateOperation(); (*requantize).BindInput(input_tensor).BindOutput(output_tensor); EXPECT_TRUE(graph->Compile()); EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(), in_data.size())); EXPECT_TRUE(graph->Run()); std::vector output(6, 0); EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data())); EXPECT_EQ(golden, output); } TEST(Rcp, shape_5_1_fp32) { auto ctx = tim::vx::Context::Create(); auto graph = ctx->CreateGraph(); tim::vx::ShapeType io_shape({5, 1}); tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, io_shape, tim::vx::TensorAttribute::INPUT); tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, io_shape, tim::vx::TensorAttribute::OUTPUT); auto input_tensor = graph->CreateTensor(input_spec); auto output_tensor = graph->CreateTensor(output_spec); std::vector in_data = { -2.5, -0.1, 0, 0.55, std::numeric_limits::infinity() }; std::vector golden = {-0.4, -10, std::numeric_limits::infinity(), 1.81818, 0.}; EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(), in_data.size()*4)); auto add = graph->CreateOperation(); (*add).BindInputs({input_tensor}).BindOutputs({output_tensor}); EXPECT_TRUE(graph->Compile()); EXPECT_TRUE(graph->Run()); std::vector output(5, 0); EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data())); EXPECT_TRUE(ArraysMatch(golden, output, 1e-5f)); }