/**************************************************************************** * * Copyright (c) 2021 Vivante Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. * *****************************************************************************/ #include "tim/vx/context.h" #include "tim/vx/graph.h" #include "tim/vx/ops/elementwise.h" #include "gtest/gtest.h" #include "test_utils.h" TEST(FloorDiv, shape_1_fp32) { auto ctx = tim::vx::Context::Create(); auto graph = ctx->CreateGraph(); tim::vx::ShapeType io_shape({1}); tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, io_shape, tim::vx::TensorAttribute::INPUT); tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, io_shape, tim::vx::TensorAttribute::OUTPUT); auto input_tensor_x = graph->CreateTensor(input_spec); auto input_tensor_y = graph->CreateTensor(input_spec); auto output_tensor = graph->CreateTensor(output_spec); std::vector in_data_x = { 1 }; std::vector in_data_y = { 0 }; std::vector golden = { std::numeric_limits::infinity() }; EXPECT_TRUE(input_tensor_x->CopyDataToTensor(in_data_x.data(), in_data_x.size()*4)); EXPECT_TRUE(input_tensor_y->CopyDataToTensor(in_data_y.data(), in_data_y.size()*4)); auto op = graph->CreateOperation(); (*op).BindInputs({input_tensor_x, input_tensor_y}).BindOutputs({output_tensor}); EXPECT_TRUE(graph->Compile()); EXPECT_TRUE(graph->Run()); std::vector output(1); EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data())); EXPECT_EQ(golden, output); } TEST(FloorDiv, shape_5_1_broadcast_float32) { auto ctx = tim::vx::Context::Create(); auto graph = ctx->CreateGraph(); tim::vx::ShapeType in_shape_x({5, 1}); tim::vx::ShapeType in_shape_y({1}); tim::vx::ShapeType out_shape({5, 1}); tim::vx::TensorSpec input_spec_x(tim::vx::DataType::FLOAT32, in_shape_x, tim::vx::TensorAttribute::INPUT); tim::vx::TensorSpec input_spec_y(tim::vx::DataType::FLOAT32, in_shape_y, tim::vx::TensorAttribute::INPUT); tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, out_shape, tim::vx::TensorAttribute::OUTPUT); auto input_tensor_x = graph->CreateTensor(input_spec_x); auto input_tensor_y = graph->CreateTensor(input_spec_y); auto output_tensor = graph->CreateTensor(output_spec); std::vector in_data_x = { 1, 3, -2, 0, 99 }; std::vector in_data_y = { 2 }; std::vector golden = { 0, 1, -1, 0, 49 }; EXPECT_TRUE(input_tensor_x->CopyDataToTensor(in_data_x.data(), in_data_x.size()*4)); EXPECT_TRUE(input_tensor_y->CopyDataToTensor(in_data_y.data(), in_data_y.size()*4)); auto op = graph->CreateOperation(); (*op).BindInputs({input_tensor_x, input_tensor_y}).BindOutputs({output_tensor}); EXPECT_TRUE(graph->Compile()); EXPECT_TRUE(graph->Run()); std::vector output(5); EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data())); EXPECT_EQ(golden, output); } TEST(FloorDiv, shape_5_1_broadcast_uint8) { auto ctx = tim::vx::Context::Create(); auto graph = ctx->CreateGraph(); tim::vx::ShapeType in_shape_x({1}); tim::vx::ShapeType in_shape_y({5, 1}); tim::vx::ShapeType out_shape({5, 1}); tim::vx::Quantization quant(tim::vx::QuantType::ASYMMETRIC, 1, 0); tim::vx::Quantization quant_out(tim::vx::QuantType::ASYMMETRIC, 0.5, 0); tim::vx::TensorSpec input_spec_x(tim::vx::DataType::UINT8, in_shape_x, tim::vx::TensorAttribute::INPUT, quant); tim::vx::TensorSpec input_spec_y(tim::vx::DataType::UINT8, in_shape_y, tim::vx::TensorAttribute::INPUT, quant); tim::vx::TensorSpec output_spec(tim::vx::DataType::UINT8, out_shape, tim::vx::TensorAttribute::OUTPUT, quant_out); auto input_tensor_x = graph->CreateTensor(input_spec_x); auto input_tensor_y = graph->CreateTensor(input_spec_y); auto output_tensor = graph->CreateTensor(output_spec); std::vector in_data_x = { 255 }; std::vector in_data_y = { 1, 3, 2, 0, 255 }; std::vector golden = { 255, 170, 254, 255, 2 }; EXPECT_TRUE(input_tensor_x->CopyDataToTensor(in_data_x.data(), in_data_x.size())); EXPECT_TRUE(input_tensor_y->CopyDataToTensor(in_data_y.data(), in_data_y.size())); auto op = graph->CreateOperation(); (*op).BindInputs({input_tensor_x, input_tensor_y}).BindOutputs({output_tensor}); EXPECT_TRUE(graph->Compile()); EXPECT_TRUE(graph->Run()); std::vector output(5); EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data())); EXPECT_EQ(golden, output); } TEST(Div, shape_1_fp32) { auto ctx = tim::vx::Context::Create(); auto graph = ctx->CreateGraph(); tim::vx::ShapeType io_shape({1}); tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, io_shape, tim::vx::TensorAttribute::INPUT); tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, io_shape, tim::vx::TensorAttribute::OUTPUT); auto input_tensor_x = graph->CreateTensor(input_spec); auto input_tensor_y = graph->CreateTensor(input_spec); auto output_tensor = graph->CreateTensor(output_spec); std::vector in_data_x = { 1 }; std::vector in_data_y = { 0 }; std::vector golden = { std::numeric_limits::infinity() }; EXPECT_TRUE(input_tensor_x->CopyDataToTensor(in_data_x.data(), in_data_x.size()*4)); EXPECT_TRUE(input_tensor_y->CopyDataToTensor(in_data_y.data(), in_data_y.size()*4)); auto op = graph->CreateOperation(); (*op).BindInputs({input_tensor_x, input_tensor_y}).BindOutputs({output_tensor}); EXPECT_TRUE(graph->Compile()); EXPECT_TRUE(graph->Run()); std::vector output(1); EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data())); EXPECT_EQ(golden, output); } TEST(Div, shape_5_1_broadcast_uint8) { auto ctx = tim::vx::Context::Create(); auto graph = ctx->CreateGraph(); tim::vx::ShapeType in_shape_x({1}); tim::vx::ShapeType in_shape_y({5, 1}); tim::vx::ShapeType out_shape({5, 1}); tim::vx::Quantization quant(tim::vx::QuantType::ASYMMETRIC, 1, 0); tim::vx::Quantization quant_out(tim::vx::QuantType::ASYMMETRIC, 0.5, 0); tim::vx::TensorSpec input_spec_x(tim::vx::DataType::UINT8, in_shape_x, tim::vx::TensorAttribute::INPUT, quant); tim::vx::TensorSpec input_spec_y(tim::vx::DataType::UINT8, in_shape_y, tim::vx::TensorAttribute::INPUT, quant); tim::vx::TensorSpec output_spec(tim::vx::DataType::UINT8, out_shape, tim::vx::TensorAttribute::OUTPUT, quant_out); auto input_tensor_x = graph->CreateTensor(input_spec_x); auto input_tensor_y = graph->CreateTensor(input_spec_y); auto output_tensor = graph->CreateTensor(output_spec); std::vector in_data_x = { 255 }; std::vector in_data_y = { 1, 2, 3, 0, 255 }; std::vector golden = { 255, 255, 170, 255, 2 }; EXPECT_TRUE(input_tensor_x->CopyDataToTensor(in_data_x.data(), in_data_x.size())); EXPECT_TRUE(input_tensor_y->CopyDataToTensor(in_data_y.data(), in_data_y.size())); auto op = graph->CreateOperation(); (*op).BindInputs({input_tensor_x, input_tensor_y}).BindOutputs({output_tensor}); EXPECT_TRUE(graph->Compile()); EXPECT_TRUE(graph->Run()); std::vector output(5); EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data())); EXPECT_EQ(golden, output); } TEST(Div, shape_5_1_broadcast_scale_uint8) { auto ctx = tim::vx::Context::Create(); auto graph = ctx->CreateGraph(); tim::vx::ShapeType in_shape_x({1}); tim::vx::ShapeType in_shape_y({5, 1}); tim::vx::ShapeType out_shape({5, 1}); tim::vx::Quantization quant(tim::vx::QuantType::ASYMMETRIC, 1, 0); tim::vx::Quantization quant_out(tim::vx::QuantType::ASYMMETRIC, 0.5, 0); tim::vx::TensorSpec input_spec_x(tim::vx::DataType::UINT8, in_shape_x, tim::vx::TensorAttribute::INPUT, quant); tim::vx::TensorSpec input_spec_y(tim::vx::DataType::UINT8, in_shape_y, tim::vx::TensorAttribute::INPUT, quant); tim::vx::TensorSpec output_spec(tim::vx::DataType::UINT8, out_shape, tim::vx::TensorAttribute::OUTPUT, quant_out); auto input_tensor_x = graph->CreateTensor(input_spec_x); auto input_tensor_y = graph->CreateTensor(input_spec_y); auto output_tensor = graph->CreateTensor(output_spec); std::vector in_data_x = { 128 }; std::vector in_data_y = { 1, 2, 3, 0, 255 }; std::vector golden = { 128, 64, 43, 255, 1 }; EXPECT_TRUE(input_tensor_x->CopyDataToTensor(in_data_x.data(), in_data_x.size())); EXPECT_TRUE(input_tensor_y->CopyDataToTensor(in_data_y.data(), in_data_y.size())); auto op = graph->CreateOperation(0.5f); (*op).BindInputs({input_tensor_x, input_tensor_y}).BindOutputs({output_tensor}); EXPECT_TRUE(graph->Compile()); EXPECT_TRUE(graph->Run()); std::vector output(5); EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data())); EXPECT_TRUE(ArraysMatch(golden, output, (uint8_t)1)); } TEST(Div, Div_uint8) { auto context = tim::vx::Context::Create(); auto graph = context->CreateGraph(); tim::vx::ShapeType input_shape({2, 3, 1, 1}); tim::vx::Quantization input_quant(tim::vx::QuantType::ASYMMETRIC, 1.0, 0); tim::vx::TensorSpec input_spec(tim::vx::DataType::UINT8, input_shape, tim::vx::TensorAttribute::INPUT, input_quant); uint8_t data1[] = {1, 2, 3, 4, 5, 6}; uint8_t data2[] = {2, 2, 2, 2, 2, 2}; auto input1 = graph->CreateTensor(input_spec, data1); auto input2 = graph->CreateTensor(input_spec, data2); tim::vx::ShapeType output_shape({2, 3, 1, 1}); tim::vx::Quantization output_quant(tim::vx::QuantType::ASYMMETRIC, 1.0, 0); tim::vx::TensorSpec output_spec(tim::vx::DataType::UINT8, output_shape, tim::vx::TensorAttribute::OUTPUT, output_quant); auto output = graph->CreateTensor(output_spec); auto op = graph->CreateOperation(); (*op).BindInputs({input1, input2}).BindOutputs({output}); if (!graph->Compile()) { std::cout << "Compile graph fail." << std::endl; EXPECT_TRUE(-1); } graph->PrintGraph(); if (!graph->Run()) { std::cout << "Run graph fail." << std::endl; EXPECT_TRUE(-1); } std::vector output_data; std::vector golden={0,1,2,2,2,3,0,0,0,0}; output_data.resize(1 * 10); if (!output->CopyDataFromTensor(output_data.data())) { std::cout << "Copy output data fail." << std::endl; EXPECT_TRUE(-1); } EXPECT_EQ(golden, output_data); }