/**************************************************************************** * * Copyright (c) 2021 Vivante Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. * *****************************************************************************/ #include "tim/vx/context.h" #include "tim/vx/graph.h" #include "tim/vx/ops/activations.h" #include "gtest/gtest.h" #include "test_utils.h" TEST(Linear, shape_5_1_fp32) { auto ctx = tim::vx::Context::Create(); auto graph = ctx->CreateGraph(); tim::vx::ShapeType io_shape({5, 1}); tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, io_shape, tim::vx::TensorAttribute::INPUT); tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, io_shape, tim::vx::TensorAttribute::OUTPUT); auto input_tensor = graph->CreateTensor(input_spec); auto output_tensor = graph->CreateTensor(output_spec); std::vector in_data = {-2.5, -0.1, 0, 0.55, std::numeric_limits::infinity()}; std::vector golden = {-0.5, 1.9, 2, 2.55, std::numeric_limits::infinity()}; EXPECT_TRUE( input_tensor->CopyDataToTensor(in_data.data(), in_data.size() * 4)); auto op = graph->CreateOperation(1, 2); (*op).BindInputs({input_tensor}).BindOutputs({output_tensor}); EXPECT_TRUE(graph->Compile()); EXPECT_TRUE(graph->Run()); std::vector output(5, 0); EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data())); EXPECT_EQ(golden, output); } TEST(Linear, shape_5_1_fp32_omit_b) { auto ctx = tim::vx::Context::Create(); auto graph = ctx->CreateGraph(); tim::vx::ShapeType io_shape({5, 1}); tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, io_shape, tim::vx::TensorAttribute::INPUT); tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, io_shape, tim::vx::TensorAttribute::OUTPUT); auto input_tensor = graph->CreateTensor(input_spec); auto output_tensor = graph->CreateTensor(output_spec); std::vector in_data = {-2.5, -0.1, 0, 0.55, std::numeric_limits::infinity()}; std::vector golden = {-5.0, -0.2, 0, 1.1, std::numeric_limits::infinity()}; EXPECT_TRUE( input_tensor->CopyDataToTensor(in_data.data(), in_data.size() * 4)); auto op = graph->CreateOperation(2); (*op).BindInputs({input_tensor}).BindOutputs({output_tensor}); EXPECT_TRUE(graph->Compile()); EXPECT_TRUE(graph->Run()); std::vector output(5, 0); EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data())); EXPECT_EQ(golden, output); } TEST(Gelu, shape_5_1_fp32_approximate) { auto ctx = tim::vx::Context::Create(); auto graph = ctx->CreateGraph(); tim::vx::ShapeType in_shape({5, 1}); tim::vx::ShapeType out_shape({5, 1}); tim::vx::TensorSpec in_spec(tim::vx::DataType::FLOAT32, in_shape, tim::vx::TensorAttribute::INPUT); tim::vx::TensorSpec out_spec(tim::vx::DataType::FLOAT32, out_shape, tim::vx::TensorAttribute::OUTPUT); auto in_tensor = graph->CreateTensor(in_spec); auto out_tensor = graph->CreateTensor(out_spec); std::vector in_data = {-3, -1, 0, 1, 3}; std::vector golden = {-0.00363752, -0.15880796, 0, 0.841192, 2.9963627}; EXPECT_TRUE(in_tensor->CopyDataToTensor(in_data.data(), in_data.size() * sizeof(float))); auto op = graph->CreateOperation(true); (*op).BindInput(in_tensor).BindOutput(out_tensor); EXPECT_TRUE(graph->Compile()); EXPECT_TRUE(graph->Run()); std::vector output(golden.size()); EXPECT_TRUE(out_tensor->CopyDataFromTensor(output.data())); EXPECT_TRUE(ArraysMatch(golden, output, 1e-5f)); } TEST(Gelu, shape_5_1_uint8_Quantized) { auto ctx = tim::vx::Context::Create(); auto graph = ctx->CreateGraph(); tim::vx::ShapeType in_shape({5, 1}); tim::vx::ShapeType out_shape({5, 1}); const float InputMin = -127, InputMax = 128, OutputMin = -127, OutputMax = 128; std::pair scalesAndZp; scalesAndZp = QuantizationParams(InputMin, InputMax); std::vector scalesInput = {scalesAndZp.first}; //scale std::vector zeroPointsInput = {scalesAndZp.second}; //zero point scalesAndZp = QuantizationParams(OutputMin, OutputMax); std::vector scalesOutput = {scalesAndZp.first}; std::vector zeroPointsOutput = {scalesAndZp.second}; tim::vx::Quantization quantInput(tim::vx::QuantType::ASYMMETRIC, 1, scalesInput, zeroPointsInput); tim::vx::Quantization quantOutput(tim::vx::QuantType::ASYMMETRIC, 1, scalesOutput, zeroPointsOutput); tim::vx::TensorSpec input_spec(tim::vx::DataType::UINT8, in_shape, tim::vx::TensorAttribute::INPUT, quantInput); tim::vx::TensorSpec output_spec(tim::vx::DataType::UINT8, out_shape, tim::vx::TensorAttribute::OUTPUT, quantOutput); auto input_tensor = graph->CreateTensor(input_spec); auto output_tensor = graph->CreateTensor(output_spec); std::vector in_float_data = {-3, -1, 0, 1, 3}; std::vector golden_float = {-0.00404951, -0.15865529, 0, 0.8413447, 2.9959507}; std::vector input_data = Quantize(in_float_data, scalesInput[0], zeroPointsInput[0]); //Quantification process std::vector golden = Quantize(golden_float, scalesOutput[0], zeroPointsOutput[0]); EXPECT_TRUE( input_tensor->CopyDataToTensor(input_data.data(), input_data.size() * 4)); auto op = graph->CreateOperation(false); (*op).BindInput(input_tensor).BindOutput(output_tensor); EXPECT_TRUE(graph->Compile()); EXPECT_TRUE(graph->Run()); std::vector output(golden.size()); EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data())); EXPECT_TRUE(ArraysMatch(golden, output, (uint8_t)1)); } TEST(HardSigmoid, shape_5_1_uint8_Quantized) { auto ctx = tim::vx::Context::Create(); auto graph = ctx->CreateGraph(); tim::vx::ShapeType in_shape({20, 1}); tim::vx::ShapeType out_shape({20, 1}); std::vector scalesInput = {0.00228914}; //scale std::vector zeroPointsInput = {128}; //zero point std::vector scalesOutput = {0.005}; std::vector zeroPointsOutput = {128}; tim::vx::Quantization quantInput(tim::vx::QuantType::ASYMMETRIC, 1, scalesInput, zeroPointsInput); tim::vx::Quantization quantOutput(tim::vx::QuantType::ASYMMETRIC, 1, scalesOutput, zeroPointsOutput); tim::vx::TensorSpec input_spec(tim::vx::DataType::UINT8, in_shape, tim::vx::TensorAttribute::INPUT, quantInput); tim::vx::TensorSpec output_spec(tim::vx::DataType::UINT8, out_shape, tim::vx::TensorAttribute::OUTPUT, quantOutput); auto input_tensor = graph->CreateTensor(input_spec); auto output_tensor = graph->CreateTensor(output_spec); std::vector in_data = {65, 255, 140, 92, 142, 122, 117, 167, 132, 117, 44, 99, 109, 96, 216, 222, 135, 126, 113, 100}; std::vector golden_data = {222, 240, 229, 225, 229, 227, 227, 232, 228, 227, 220, 225, 226, 225, 236, 237, 229, 228, 227, 225}; EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(), in_data.size())); auto op = graph->CreateOperation(0.2, 0.5); (*op).BindInput(input_tensor).BindOutput(output_tensor); EXPECT_TRUE(graph->Compile()); EXPECT_TRUE(graph->Run()); std::vector output(golden_data.size()); EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data())); EXPECT_TRUE(ArraysMatch(golden_data, output, (uint8_t)1)); } TEST(HardSigmoid, a_b_) { auto ctx = tim::vx::Context::Create(); auto graph = ctx->CreateGraph(); tim::vx::ShapeType in_shape({20, 1}); tim::vx::ShapeType out_shape({20, 1}); std::vector scalesInput = {0.00228914}; //scale std::vector zeroPointsInput = {128}; //zero point std::vector scalesOutput = {0.005}; std::vector zeroPointsOutput = {128}; tim::vx::Quantization quantInput(tim::vx::QuantType::ASYMMETRIC, 1, scalesInput, zeroPointsInput); tim::vx::Quantization quantOutput(tim::vx::QuantType::ASYMMETRIC, 1, scalesOutput, zeroPointsOutput); tim::vx::TensorSpec input_spec(tim::vx::DataType::UINT8, in_shape, tim::vx::TensorAttribute::INPUT, quantInput); tim::vx::TensorSpec output_spec(tim::vx::DataType::UINT8, out_shape, tim::vx::TensorAttribute::OUTPUT, quantOutput); auto input_tensor = graph->CreateTensor(input_spec); auto output_tensor = graph->CreateTensor(output_spec); std::vector in_data = {65, 255, 140, 92, 142, 122, 117, 167, 132, 117, 44, 99, 109, 96, 216, 222, 135, 126, 113, 100}; std::vector golden_data = {239, 255, 250, 243, 250, 247, 246, 253, 249, 246, 236, 244, 245, 244, 255, 255, 249, 248, 246, 244}; EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(), in_data.size())); auto op = graph->CreateOperation(0.3, 0.6); (*op).BindInput(input_tensor).BindOutput(output_tensor); EXPECT_TRUE(graph->Compile()); EXPECT_TRUE(graph->Run()); std::vector output(golden_data.size()); EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data())); EXPECT_EQ(golden_data, output); } TEST(Elu, shape_5_1_fp32) { auto ctx = tim::vx::Context::Create(); auto graph = ctx->CreateGraph(); tim::vx::ShapeType io_shape({5, 1}); tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, io_shape, tim::vx::TensorAttribute::INPUT); tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, io_shape, tim::vx::TensorAttribute::OUTPUT); auto input_tensor = graph->CreateTensor(input_spec); auto output_tensor = graph->CreateTensor(output_spec); std::vector in_data = {-2.5, -0.1, 0, 0.55, 99}; std::vector golden = {-0.917915, -0.0951626, 0, 0.55, 99}; EXPECT_TRUE( input_tensor->CopyDataToTensor(in_data.data(), in_data.size() * 4)); auto op = graph->CreateOperation(); (*op).BindInputs({input_tensor}).BindOutputs({output_tensor}); EXPECT_TRUE(graph->Compile()); EXPECT_TRUE(graph->Run()); std::vector output(5, 0); EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data())); EXPECT_TRUE(ArraysMatch(golden, output, 1e-5f)); } TEST(Elu, shape_5_1_fp32_a) { auto ctx = tim::vx::Context::Create(); auto graph = ctx->CreateGraph(); tim::vx::ShapeType io_shape({5, 1}); tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, io_shape, tim::vx::TensorAttribute::INPUT); tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, io_shape, tim::vx::TensorAttribute::OUTPUT); auto input_tensor = graph->CreateTensor(input_spec); auto output_tensor = graph->CreateTensor(output_spec); std::vector in_data = {-2.5, -0.1, 0, 0.55, 99}; std::vector golden = {-0.458957, -0.0475813, 0, 0.55, 99}; EXPECT_TRUE( input_tensor->CopyDataToTensor(in_data.data(), in_data.size() * 4)); auto op = graph->CreateOperation(0.5); (*op).BindInputs({input_tensor}).BindOutputs({output_tensor}); EXPECT_TRUE(graph->Compile()); EXPECT_TRUE(graph->Run()); std::vector output(5, 0); EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data())); EXPECT_TRUE(ArraysMatch(golden, output, 1e-5f)); } TEST(Selu, shape_2_2) { auto ctx = tim::vx::Context::Create(); auto graph = ctx->CreateGraph(); tim::vx::ShapeType in_shape({2, 2}); tim::vx::ShapeType out_shape({2, 2}); tim::vx::TensorSpec in_spec(tim::vx::DataType::FLOAT32, in_shape, tim::vx::TensorAttribute::INPUT); tim::vx::TensorSpec out_spec(tim::vx::DataType::FLOAT32, out_shape, tim::vx::TensorAttribute::OUTPUT); auto in_tensor = graph->CreateTensor(in_spec); auto out_tensor = graph->CreateTensor(out_spec); std::vector in_data = {2, 1, 3, 10}; std::vector golden = {2.1014, 1.0507, 3.1521, 10.507}; EXPECT_TRUE(in_tensor->CopyDataToTensor(in_data.data(), in_data.size() * sizeof(float))); auto op = graph->CreateOperation(); (*op).BindInputs({in_tensor}).BindOutputs({out_tensor}); EXPECT_TRUE(graph->Compile()); EXPECT_TRUE(graph->Run()); std::vector output(golden.size()); EXPECT_TRUE(out_tensor->CopyDataFromTensor(output.data())); EXPECT_TRUE(ArraysMatch(golden, output, 1e-5f)); } TEST(Celu, shape_2_2) { auto ctx = tim::vx::Context::Create(); auto graph = ctx->CreateGraph(); tim::vx::ShapeType in_shape({2, 2}); tim::vx::ShapeType out_shape({2, 2}); tim::vx::TensorSpec in_spec(tim::vx::DataType::FLOAT32, in_shape, tim::vx::TensorAttribute::INPUT); tim::vx::TensorSpec out_spec(tim::vx::DataType::FLOAT32, out_shape, tim::vx::TensorAttribute::OUTPUT); auto in_tensor = graph->CreateTensor(in_spec); auto out_tensor = graph->CreateTensor(out_spec); std::vector in_data = {-1, 0.71, 3, 10}; std::vector golden = {-0.69762, 0.71, 3, 10}; EXPECT_TRUE(in_tensor->CopyDataToTensor(in_data.data(), in_data.size() * sizeof(float))); auto op = graph->CreateOperation(1.3); (*op).BindInputs({in_tensor}).BindOutputs({out_tensor}); EXPECT_TRUE(graph->Compile()); EXPECT_TRUE(graph->Run()); std::vector output(golden.size()); EXPECT_TRUE(out_tensor->CopyDataFromTensor(output.data())); EXPECT_TRUE(ArraysMatch(golden, output, 1e-5f)); }