/**************************************************************************** * * Copyright (c) 2020-2023 Vivante Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. * *****************************************************************************/ #include "tim/vx/context.h" #include "tim/vx/graph.h" #include "tim/vx/ops/instancenormalization.h" #include "test_utils.h" #include "gtest/gtest.h" TEST(InstanceNorm, shape_2_2_2_2_float) { auto ctx = tim::vx::Context::Create(); auto graph = ctx->CreateGraph(); tim::vx::ShapeType io_shape({2, 2, 2, 2}); //nchw tim::vx::ShapeType param_shape({2}); tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, io_shape, tim::vx::TensorAttribute::INPUT); tim::vx::TensorSpec param_spec(tim::vx::DataType::FLOAT32, param_shape, tim::vx::TensorAttribute::INPUT); tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, io_shape, tim::vx::TensorAttribute::OUTPUT); auto input_tensor = graph->CreateTensor(input_spec); auto gamma_tensor = graph->CreateTensor(param_spec); auto beta_tensor = graph->CreateTensor(param_spec); auto output_tensor = graph->CreateTensor(output_spec); std::vector in_data = { 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 2.0f, 2.0f, 4.0f, 1.0f, -1.0f, -1.0f, 1.0f, -1.0f, 2.0f, -2.0f, 4.0f }; std::vector gamma = {1.0f, 1.0f}; std::vector beta = {.0f, .0f}; std::vector golden = { 0.0f, 0.0f, 0.0f, 0.0f, -1.1470304f, -0.22940612f, -0.22940612f, 1.6058424f, 0.99995005f, -0.99995005f, -0.99995005f, 0.99995005f, -0.7337929f, 0.52413774f, -1.1531031f, 1.3627582f }; EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(), in_data.size() * sizeof(float))); EXPECT_TRUE(gamma_tensor->CopyDataToTensor(gamma.data(), gamma.size() * sizeof(float))); EXPECT_TRUE(beta_tensor->CopyDataToTensor(beta.data(), beta.size() * sizeof(float))); auto op = graph->CreateOperation(1e-4f); (*op).BindInputs({input_tensor, beta_tensor, gamma_tensor}).BindOutputs({output_tensor}); EXPECT_TRUE(graph->Compile()); EXPECT_TRUE(graph->Run()); std::vector output(16); EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data())); EXPECT_TRUE(ArraysMatch(golden, output, 1e-5f)); } TEST(InstanceNorm, shape_3_6_1_float) { auto ctx = tim::vx::Context::Create(); auto graph = ctx->CreateGraph(); tim::vx::ShapeType io_shape({3, 6, 1}); tim::vx::ShapeType param_shape({6}); tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, io_shape, tim::vx::TensorAttribute::INPUT); tim::vx::TensorSpec param_spec(tim::vx::DataType::FLOAT32, param_shape, tim::vx::TensorAttribute::INPUT); tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, io_shape, tim::vx::TensorAttribute::OUTPUT); auto input_tensor = graph->CreateTensor(input_spec); auto gamma_tensor = graph->CreateTensor(param_spec); auto beta_tensor = graph->CreateTensor(param_spec); auto output_tensor = graph->CreateTensor(output_spec); std::vector in_data = { -2, 0, 2, -3, 0, 3, -4, 0, 4, -5, 0, 5, -6, 0, 6, -7, 0, 7 }; std::vector gamma = { 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f }; std::vector beta = { .0f, .0f, .0f, .0f, .0f, .0f }; std::vector golden = { -1.22474f, 0, 1.22474f, -1.22474f, 0, 1.22474f, -1.22474f, 0, 1.22474f, -1.22474f, 0, 1.22474f, -1.22474f, 0, 1.22474f, -1.22474f, 0, 1.22474f, }; EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(), in_data.size() * sizeof(float))); EXPECT_TRUE(gamma_tensor->CopyDataToTensor(gamma.data(), gamma.size() * sizeof(float))); EXPECT_TRUE(beta_tensor->CopyDataToTensor(beta.data(), beta.size() * sizeof(float))); auto op = graph->CreateOperation(2e-5f); (*op).BindInputs({input_tensor, beta_tensor, gamma_tensor}).BindOutputs({output_tensor}); EXPECT_TRUE(graph->Compile()); EXPECT_TRUE(graph->Run()); std::vector output(18); EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data())); EXPECT_TRUE(ArraysMatch(golden, output, 1e-5f)); } TEST(InstanceNorm, shape_3_3_6_1_float) { auto ctx = tim::vx::Context::Create(); auto graph = ctx->CreateGraph(); tim::vx::ShapeType io_shape({2, 3, 6, 1}); tim::vx::ShapeType param_shape({6}); tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, io_shape, tim::vx::TensorAttribute::INPUT); tim::vx::TensorSpec param_spec(tim::vx::DataType::FLOAT32, param_shape, tim::vx::TensorAttribute::INPUT); tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, io_shape, tim::vx::TensorAttribute::OUTPUT); auto input_tensor = graph->CreateTensor(input_spec); auto gamma_tensor = graph->CreateTensor(param_spec); auto beta_tensor = graph->CreateTensor(param_spec); auto output_tensor = graph->CreateTensor(output_spec); std::vector in_data = { -2, 0, 2, -2, 0, 2, -3, 0, 3, -3, 0, 3, -4, 0, 4, -4, 0, 4, -5, 0, 5, -5, 0, 5, -6, 0, 6, -6, 0, 6, -7, 0, 7, -7, 0, 7, }; std::vector gamma = { 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f }; std::vector beta = { .0f, .0f, .0f, .0f, .0f, .0f }; std::vector golden = { -1.22474f, 0, 1.22474f, -1.22474f, 0, 1.22474f, -1.22474f, 0, 1.22474f, -1.22474f, 0, 1.22474f, -1.22474f, 0, 1.22474f, -1.22474f, 0, 1.22474f, -1.22474f, 0, 1.22474f, -1.22474f, 0, 1.22474f, -1.22474f, 0, 1.22474f, -1.22474f, 0, 1.22474f, -1.22474f, 0, 1.22474f, -1.22474f, 0, 1.22474f, }; EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(), in_data.size() * sizeof(float))); EXPECT_TRUE(gamma_tensor->CopyDataToTensor(gamma.data(), gamma.size() * sizeof(float))); EXPECT_TRUE(beta_tensor->CopyDataToTensor(beta.data(), beta.size() * sizeof(float))); auto op = graph->CreateOperation(2e-5f); (*op).BindInputs({input_tensor, beta_tensor, gamma_tensor}).BindOutputs({output_tensor}); EXPECT_TRUE(graph->Compile()); EXPECT_TRUE(graph->Run()); std::vector output(36); EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data())); EXPECT_TRUE(ArraysMatch(golden, output, 1e-5f)); } #if 0 // Fail case TEST(OP, instance_norm_shape_3_6_1_uint8) { auto ctx = tim::vx::Context::Create(); auto graph = ctx->CreateGraph(); tim::vx::ShapeType io_shape({3, 6, 1}); tim::vx::ShapeType param_shape({6}); tim::vx::Quantization input_quant(tim::vx::QuantType::ASYMMETRIC, 1, 7); tim::vx::Quantization output_quant(tim::vx::QuantType::ASYMMETRIC, 1.22474f, 1); tim::vx::TensorSpec input_spec(tim::vx::DataType::UINT8, io_shape, tim::vx::TensorAttribute::INPUT, input_quant); tim::vx::TensorSpec param_spec(tim::vx::DataType::FLOAT32, param_shape, tim::vx::TensorAttribute::INPUT); tim::vx::TensorSpec output_spec(tim::vx::DataType::UINT8, io_shape, tim::vx::TensorAttribute::OUTPUT, output_quant); auto input_tensor = graph->CreateTensor(input_spec); auto gamma_tensor = graph->CreateTensor(param_spec); auto beta_tensor = graph->CreateTensor(param_spec); auto output_tensor = graph->CreateTensor(output_spec); std::vector in_data = { 5, 7, 9, 4, 7, 10, 3, 7, 11, 2, 7, 12, 1, 7, 13, 0, 7, 14 }; std::vector gamma = { 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f }; std::vector beta = { .0f, .0f, .0f, .0f, .0f, .0f }; std::vector golden = { 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, }; EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(), in_data.size())); EXPECT_TRUE(gamma_tensor->CopyDataToTensor(gamma.data(), gamma.size() * sizeof(float))); EXPECT_TRUE(beta_tensor->CopyDataToTensor(beta.data(), beta.size() * sizeof(float))); auto op = graph->CreateOperation(2e-5f); (*op).BindInputs({input_tensor, beta_tensor, gamma_tensor}).BindOutputs({output_tensor}); EXPECT_TRUE(graph->Compile()); EXPECT_TRUE(graph->Run()); std::vector output(18); EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data())); EXPECT_EQ(golden, output); } #endif