#include "gtest/gtest.h" #include "tim/vx/context.h" #include "tim/vx/graph.h" #include "tim/vx/ops/conv2d.h" #include "tim/vx/types.h" TEST(DepthwiseConv, shape_2_3_2_1_float32_SimpleTest) { auto ctx = tim::vx::Context::Create(); auto graph = ctx->CreateGraph(); tim::vx::ShapeType input_shape({2, 3, 2, 1}); //whcn tim::vx::ShapeType weight_shape({2, 2, 4, 1}); //whoi tim::vx::ShapeType bias_shape({weight_shape[2]}); tim::vx::ShapeType output_shape( {1, 2, weight_shape[2], input_shape[3]}); //whcn tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, input_shape, tim::vx::TensorAttribute::INPUT); tim::vx::TensorSpec weight_spec(tim::vx::DataType::FLOAT32, weight_shape, tim::vx::TensorAttribute::CONSTANT); tim::vx::TensorSpec bias_spec(tim::vx::DataType::FLOAT32, bias_shape, tim::vx::TensorAttribute::CONSTANT); tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, output_shape, tim::vx::TensorAttribute::OUTPUT); // Input data nchw std::vector input_data = {1, 7, 3, 9, 5, 11, 2, 8, 4, 10, 6, 12}; // weight data iohw std::vector weight_data = {1, -9, 5, 13, 2, 10, 6, -14, 3, -11, 7, 15, 4, 12, 8, -16}; // bias data std::vector bias_data = {1, 2, 3, 4}; // nchw std::vector golden = {71, 91, -34, -26, 99, 127, -20, -4}; auto input_tensor = graph->CreateTensor(input_spec); auto weight_tensor = graph->CreateTensor(weight_spec, weight_data.data()); auto bias_tensor = graph->CreateTensor(bias_spec, bias_data.data()); auto output_tensor = graph->CreateTensor(output_spec); auto padding = tim::vx::PadType::VALID; std::array stride({1, 1}); std::array dilation({1, 1}); int32_t multiplier = weight_shape[2] / input_shape[2]; auto conv2d = graph->CreateOperation( padding, stride, dilation, multiplier); (*conv2d) .BindInput(input_tensor) .BindInput(weight_tensor) .BindInput(bias_tensor) .BindOutput(output_tensor); EXPECT_TRUE(graph->Compile()); input_tensor->CopyDataToTensor(input_data.data()); EXPECT_TRUE(graph->Run()); uint32_t output_size = 1; for (auto i : output_tensor->GetShape()) { output_size *= i; } std::vector output(output_size); EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data())); EXPECT_EQ(golden, output); } TEST(DepthwiseConv, shape_2_3_2_1_float32_StrideTest) { auto ctx = tim::vx::Context::Create(); auto graph = ctx->CreateGraph(); tim::vx::ShapeType input_shape({2, 3, 2, 1}); //whcn tim::vx::ShapeType weight_shape({2, 2, 4, 1}); //whoi tim::vx::ShapeType bias_shape({weight_shape[2]}); tim::vx::ShapeType output_shape( {1, 1, weight_shape[2], input_shape[3]}); //whcn tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, input_shape, tim::vx::TensorAttribute::INPUT); tim::vx::TensorSpec weight_spec(tim::vx::DataType::FLOAT32, weight_shape, tim::vx::TensorAttribute::CONSTANT); tim::vx::TensorSpec bias_spec(tim::vx::DataType::FLOAT32, bias_shape, tim::vx::TensorAttribute::CONSTANT); tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, output_shape, tim::vx::TensorAttribute::OUTPUT); // Input data nchw std::vector input_data = {1, 7, 3, 9, 5, 11, 2, 8, 4, 10, 6, 12}; // weight data iohw std::vector weight_data = {1, -9, 5, 13, 2, 10, 6, -14, 3, -11, 7, 15, 4, 12, 8, -16}; // bias data std::vector bias_data = {1, 2, 3, 4}; // nchw std::vector golden = {71, -34, 99, -20}; auto input_tensor = graph->CreateTensor(input_spec); auto weight_tensor = graph->CreateTensor(weight_spec, weight_data.data()); auto bias_tensor = graph->CreateTensor(bias_spec, bias_data.data()); auto output_tensor = graph->CreateTensor(output_spec); auto padding = tim::vx::PadType::VALID; std::array stride({2, 2}); std::array dilation({1, 1}); int32_t multiplier = weight_shape[2] / input_shape[2]; auto conv2d = graph->CreateOperation( padding, stride, dilation, multiplier); (*conv2d) .BindInput(input_tensor) .BindInput(weight_tensor) .BindInput(bias_tensor) .BindOutput(output_tensor); EXPECT_TRUE(graph->Compile()); input_tensor->CopyDataToTensor(input_data.data()); EXPECT_TRUE(graph->Run()); uint32_t output_size = 1; for (auto i : output_tensor->GetShape()) { output_size *= i; } std::vector output(output_size); EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data())); EXPECT_EQ(golden, output); } TEST(DepthwiseConv, shape_2_3_2_1_float32_PaddingTest) { auto ctx = tim::vx::Context::Create(); auto graph = ctx->CreateGraph(); tim::vx::ShapeType input_shape({2, 3, 2, 1}); //whcn tim::vx::ShapeType weight_shape({2, 2, 4, 1}); //whoi tim::vx::ShapeType bias_shape({weight_shape[2]}); tim::vx::ShapeType output_shape( {1, 1, weight_shape[2], input_shape[3]}); //whcn tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, input_shape, tim::vx::TensorAttribute::INPUT); tim::vx::TensorSpec weight_spec(tim::vx::DataType::FLOAT32, weight_shape, tim::vx::TensorAttribute::CONSTANT); tim::vx::TensorSpec bias_spec(tim::vx::DataType::FLOAT32, bias_shape, tim::vx::TensorAttribute::CONSTANT); tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, output_shape, tim::vx::TensorAttribute::OUTPUT); // Input data nchw std::vector input_data = {1, 7, 3, 9, 5, 11, 2, 8, 4, 10, 6, 12}; // weight data iohw std::vector weight_data = {1, -9, 5, 13, 2, 10, 6, -14, 3, -11, 7, 15, 4, 12, 8, -16}; // bias data std::vector bias_data = {1, 2, 3, 4}; // nchw std::vector golden = {71, -34, 99, -20}; auto input_tensor = graph->CreateTensor(input_spec); auto weight_tensor = graph->CreateTensor(weight_spec, weight_data.data()); auto bias_tensor = graph->CreateTensor(bias_spec, bias_data.data()); auto output_tensor = graph->CreateTensor(output_spec); auto padding = tim::vx::PadType::SAME; std::array stride({2, 2}); std::array dilation({1, 1}); int32_t multiplier = weight_shape[2] / input_shape[2]; auto conv2d = graph->CreateOperation( padding, stride, dilation, multiplier); (*conv2d) .BindInput(input_tensor) .BindInput(weight_tensor) .BindInput(bias_tensor) .BindOutput(output_tensor); EXPECT_TRUE(graph->Compile()); input_tensor->CopyDataToTensor(input_data.data()); EXPECT_TRUE(graph->Run()); uint32_t output_size = 1; for (auto i : output_tensor->GetShape()) { output_size *= i; } std::vector output(output_size); EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data())); EXPECT_EQ(golden, output); } TEST(DepthwiseConv, shape_9_9_1_1_float32_DilationValidTest) { auto ctx = tim::vx::Context::Create(); auto graph = ctx->CreateGraph(); tim::vx::ShapeType input_shape({9, 9, 1, 1}); //whcn tim::vx::ShapeType weight_shape({3, 3, 1, 1}); //whoi tim::vx::ShapeType bias_shape({weight_shape[2]}); tim::vx::ShapeType output_shape( {3, 3, weight_shape[2], input_shape[3]}); //whcn tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, input_shape, tim::vx::TensorAttribute::INPUT); tim::vx::TensorSpec weight_spec(tim::vx::DataType::FLOAT32, weight_shape, tim::vx::TensorAttribute::CONSTANT); tim::vx::TensorSpec bias_spec(tim::vx::DataType::FLOAT32, bias_shape, tim::vx::TensorAttribute::CONSTANT); tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, output_shape, tim::vx::TensorAttribute::OUTPUT); // Input data nchw std::vector input_data = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; // weight data iohw std::vector weight_data = {1, 2, 3, 4, 5, 6, 7, 8, 9}; // bias data std::vector bias_data = {0}; // nchw std::vector golden = {5, 5, 5, 5, 5, 5, 5, 5, 5}; auto input_tensor = graph->CreateTensor(input_spec); auto weight_tensor = graph->CreateTensor(weight_spec, weight_data.data()); auto bias_tensor = graph->CreateTensor(bias_spec, bias_data.data()); auto output_tensor = graph->CreateTensor(output_spec); auto padding = tim::vx::PadType::VALID; std::array stride({1, 1}); std::array dilation({3, 3}); int32_t multiplier = weight_shape[2] / input_shape[2]; auto conv2d = graph->CreateOperation( padding, stride, dilation, multiplier); (*conv2d) .BindInput(input_tensor) .BindInput(weight_tensor) .BindInput(bias_tensor) .BindOutput(output_tensor); EXPECT_TRUE(graph->Compile()); input_tensor->CopyDataToTensor(input_data.data()); EXPECT_TRUE(graph->Run()); uint32_t output_size = 1; for (auto i : output_tensor->GetShape()) { output_size *= i; } std::vector output(output_size); EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data())); EXPECT_EQ(golden, output); } TEST(DepthwiseConv, shape_3_3_1_1_float32_DilationSameTest) { auto ctx = tim::vx::Context::Create(); auto graph = ctx->CreateGraph(); tim::vx::ShapeType input_shape({3, 3, 1, 1}); //whcn tim::vx::ShapeType weight_shape({2, 2, 1, 1}); //whoi tim::vx::ShapeType bias_shape({weight_shape[2]}); tim::vx::ShapeType output_shape( {3, 3, weight_shape[2], input_shape[3]}); //whcn tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, input_shape, tim::vx::TensorAttribute::INPUT); tim::vx::TensorSpec weight_spec(tim::vx::DataType::FLOAT32, weight_shape, tim::vx::TensorAttribute::CONSTANT); tim::vx::TensorSpec bias_spec(tim::vx::DataType::FLOAT32, bias_shape, tim::vx::TensorAttribute::CONSTANT); tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, output_shape, tim::vx::TensorAttribute::OUTPUT); // Input data nchw std::vector input_data = {1, 1, 1, 1, 1, 1, 1, 1, 1}; // weight data iohw std::vector weight_data = {1, 2, 3, 4}; // bias data std::vector bias_data = {0}; // nchw std::vector golden = {4, 7, 3, 6, 10, 4, 2, 3, 1}; auto input_tensor = graph->CreateTensor(input_spec); auto weight_tensor = graph->CreateTensor(weight_spec, weight_data.data()); auto bias_tensor = graph->CreateTensor(bias_spec, bias_data.data()); auto output_tensor = graph->CreateTensor(output_spec); auto padding = tim::vx::PadType::SAME; std::array stride({1, 1}); std::array dilation({2, 2}); int32_t multiplier = weight_shape[2] / input_shape[2]; auto conv2d = graph->CreateOperation( padding, stride, dilation, multiplier); (*conv2d) .BindInput(input_tensor) .BindInput(weight_tensor) .BindInput(bias_tensor) .BindOutput(output_tensor); EXPECT_TRUE(graph->Compile()); input_tensor->CopyDataToTensor(input_data.data()); EXPECT_TRUE(graph->Run()); uint32_t output_size = 1; for (auto i : output_tensor->GetShape()) { output_size *= i; } std::vector output(output_size); EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data())); EXPECT_EQ(golden, output); } TEST(DepthwiseConv, shape_3_3_4_2_float32_BatchValidTest) { auto ctx = tim::vx::Context::Create(); auto graph = ctx->CreateGraph(); tim::vx::ShapeType input_shape({3, 3, 4, 2}); //whcn tim::vx::ShapeType weight_shape({3, 3, 4, 1}); //whoi tim::vx::ShapeType bias_shape({weight_shape[2]}); tim::vx::ShapeType output_shape( {1, 1, weight_shape[2], input_shape[3]}); //whcn tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, input_shape, tim::vx::TensorAttribute::INPUT); tim::vx::TensorSpec weight_spec(tim::vx::DataType::FLOAT32, weight_shape, tim::vx::TensorAttribute::CONSTANT); tim::vx::TensorSpec bias_spec(tim::vx::DataType::FLOAT32, bias_shape, tim::vx::TensorAttribute::CONSTANT); tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, output_shape, tim::vx::TensorAttribute::OUTPUT); // Input data nchw std::vector input_data = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; // weight data iohw std::vector weight_data = {1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4}; // bias data std::vector bias_data = {0, 0, 0, 0}; // nchw std::vector golden = {9, 18, 0, 0, 9, 18, 0, 0}; auto input_tensor = graph->CreateTensor(input_spec); auto weight_tensor = graph->CreateTensor(weight_spec, weight_data.data()); auto bias_tensor = graph->CreateTensor(bias_spec, bias_data.data()); auto output_tensor = graph->CreateTensor(output_spec); auto padding = tim::vx::PadType::VALID; std::array stride({1, 1}); std::array dilation({1, 1}); int32_t multiplier = weight_shape[2] / input_shape[2]; auto conv2d = graph->CreateOperation( padding, stride, dilation, multiplier); (*conv2d) .BindInput(input_tensor) .BindInput(weight_tensor) .BindInput(bias_tensor) .BindOutput(output_tensor); EXPECT_TRUE(graph->Compile()); input_tensor->CopyDataToTensor(input_data.data()); EXPECT_TRUE(graph->Run()); uint32_t output_size = 1; for (auto i : output_tensor->GetShape()) { output_size *= i; } std::vector output(output_size); EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data())); EXPECT_EQ(golden, output); } TEST(DepthwiseConv, shape_2_2_1_4_float32_BatchSameTest) { auto ctx = tim::vx::Context::Create(); auto graph = ctx->CreateGraph(); tim::vx::ShapeType input_shape({2, 2, 1, 4}); //whcn tim::vx::ShapeType weight_shape({3, 3, 1, 1}); //whoi tim::vx::ShapeType bias_shape({weight_shape[2]}); tim::vx::ShapeType output_shape( {2, 2, weight_shape[2], input_shape[3]}); //whcn tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, input_shape, tim::vx::TensorAttribute::INPUT); tim::vx::TensorSpec weight_spec(tim::vx::DataType::FLOAT32, weight_shape, tim::vx::TensorAttribute::CONSTANT); tim::vx::TensorSpec bias_spec(tim::vx::DataType::FLOAT32, bias_shape, tim::vx::TensorAttribute::CONSTANT); tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, output_shape, tim::vx::TensorAttribute::OUTPUT); // Input data nchw std::vector input_data = {1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 2, 2, 2, 2, 2, 2}; // weight data iohw std::vector weight_data = {1, 1, 1, 0, 2, 0, 1, 1, 1}; // bias data std::vector bias_data = {0}; // nchw std::vector golden = {4, 4, 4, 4, 0, 0, 0, 0, 6, 6, 6, 6, 8, 8, 8, 8}; auto input_tensor = graph->CreateTensor(input_spec); auto weight_tensor = graph->CreateTensor(weight_spec, weight_data.data()); auto bias_tensor = graph->CreateTensor(bias_spec, bias_data.data()); auto output_tensor = graph->CreateTensor(output_spec); auto padding = tim::vx::PadType::SAME; std::array stride({1, 1}); std::array dilation({1, 1}); int32_t multiplier = weight_shape[2] / input_shape[2]; auto conv2d = graph->CreateOperation( padding, stride, dilation, multiplier); (*conv2d) .BindInput(input_tensor) .BindInput(weight_tensor) .BindInput(bias_tensor) .BindOutput(output_tensor); EXPECT_TRUE(graph->Compile()); input_tensor->CopyDataToTensor(input_data.data()); EXPECT_TRUE(graph->Run()); uint32_t output_size = 1; for (auto i : output_tensor->GetShape()) { output_size *= i; } std::vector output(output_size); EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data())); EXPECT_EQ(golden, output); }