/**************************************************************************** * * Copyright (c) 2020 Vivante Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. * *****************************************************************************/ #ifndef TIM_LAYOUT_INFER_CONV2D_LAYOUT_INFERENCE_H_ #define TIM_LAYOUT_INFER_CONV2D_LAYOUT_INFERENCE_H_ #include "tim/vx/ops/conv2d.h" #include "operation_private.h" #include "permute_vector.h" #include "ops/op_layout_inference.h" namespace tim { namespace transform { class Conv2dLayoutInfer : public OpLayoutInfer { public: Conv2dLayoutInfer( const std::shared_ptr op, std::shared_ptr& context) : OpLayoutInfer(op, context) {} void OnInputs( std::vector>& next_tensors) override { vx::DataLayout layout = op_->impl()->layout_; auto required_pv = MakeShared(4); if (layout == vx::DataLayout::CWHN) { required_pv = std::make_shared>(kCWHN2WHCN); } auto input_tensors = op_->impl()->InputsTensor(); for (const auto& in : input_tensors) { std::shared_ptr infer_tensor; std::shared_ptr trans_pv; if (in->IsConstTensor() && !(in->GetSpec().attr_ & vx::TensorAttribute::INPUT)) { // For bias if (in->GetShape().size() == 1) { infer_tensor = context_->infer_graph_->CreateTensor( in->GetSpec(), in->GetDataRef()); trans_pv = MakeShared(1); } else { // For input/weight if (!required_pv->IsAligned()) { auto src_conv2d = std::static_pointer_cast(op_); // Support TVM Kernel Layout if (src_conv2d->KernelDataLayout() == vx::DataLayout::OcIcWH) { trans_pv = std::make_shared>(kOcIcWH2WHIcOc); infer_tensor = PermuteConstTensor( in, trans_pv); } else if (src_conv2d->KernelDataLayout() == vx::DataLayout::IcOcWH) { trans_pv = std::make_shared>(kIcOcWH2WHIcOc); infer_tensor = PermuteConstTensor( in, trans_pv); } else { infer_tensor = PermuteConstTensor(in, required_pv); trans_pv = required_pv; } } else { infer_tensor = context_->infer_graph_->CreateTensor( in->GetSpec(), in->GetDataRef()); trans_pv = MakeShared(required_pv->Rank()); } } } else { // For bias if (in->GetShape().size() == 1) { infer_tensor = context_->GetMapedTensor(in); trans_pv = MakeShared(1); } else { // For input/weight auto pv = context_->GetPermuteVector(in); auto final_pv = pv->Reverse()->Add(required_pv); if (!final_pv->IsAligned()) { infer_tensor = InsertPermute(context_->GetMapedTensor(in), final_pv); trans_pv = required_pv; } else { infer_tensor = context_->GetMapedTensor(in); trans_pv = pv; } } } context_->UpdateTensorMap(in, infer_tensor); context_->SetPermuteVector(in, trans_pv); } auto pad_type = TranslatePadType(op_->impl()->node()->nn_param.conv2d.pad_type); std::array ksize = { op_->impl()->node()->nn_param.conv2d.ksize[0], op_->impl()->node()->nn_param.conv2d.ksize[1] }; std::array stride = { op_->impl()->node()->nn_param.conv2d.stride[0], op_->impl()->node()->nn_param.conv2d.stride[1] }; std::array dilation = { op_->impl()->node()->nn_param.conv2d.dilation[0], op_->impl()->node()->nn_param.conv2d.dilation[1] }; std::array pad = { op_->impl()->node()->nn_param.conv2d.pad[0], op_->impl()->node()->nn_param.conv2d.pad[1], op_->impl()->node()->nn_param.conv2d.pad[2], op_->impl()->node()->nn_param.conv2d.pad[3] }; int32_t multiplier = op_->impl()->node()->nn_param.conv2d.multiplier; int32_t out_channels = op_->impl()->node()->nn_param.conv2d.weights; auto conv2d = context_->infer_graph_->CreateOperation( out_channels, pad_type, ksize, stride, dilation, pad, multiplier, vx::DataLayout::WHCN, vx::DataLayout::WHIcOc); auto otensor_infer = CreateOutputsTensor(required_pv); for (const auto& i_src : input_tensors) { (*conv2d).BindInput(context_->GetMapedTensor(i_src)); } (*conv2d).BindOutput(otensor_infer[0]); context_->SetPermuteVector(op_->impl()->OutputsTensor()[0], required_pv); // Add out tensor of src_graph into next_tensor next_tensors.push_back(op_->impl()->OutputsTensor()[0]); } }; } // namespace transform } // namespace tim #endif