/**************************************************************************** * * Copyright (c) 2020 Vivante Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. * *****************************************************************************/ #include "op_layout_inference.h" #include "src/tim/layout_infer/permute_vector.h" #include "src/tim/vx/operation_private.h" #include "tim/vx/ops/transpose.h" #include #include namespace tim { namespace transform { void OpLayoutInfer::OnOutputs( std::vector>& next_tensors) { auto graph_outputs = context_->src_graph_->OutputsTensor(); auto op_outputs = op_->impl()->OutputsTensor(); for (const auto& out : op_outputs) { if (graph_outputs.end() != std::find(graph_outputs.begin(), graph_outputs.end(), out)) { auto pv = context_->GetPermuteVector(out); if (!pv->IsAligned()) { auto perm_out = InsertPermute(context_->GetMapedTensor(out), pv->Reverse(), true, out); // Update graph out tensor context_->UpdateTensorMap(out, perm_out); } if (!context_->src_graph_->GetConsumersOp(out).empty()) { // The tensor is output of graph, but it also is the input of other operations context_->SetPermuteVector(out, MakeShared(pv->Rank())); } else { auto it = std::find(next_tensors.begin(), next_tensors.end(), out); if (it != next_tensors.end()) { next_tensors.erase(it); } } } } } std::shared_ptr OpLayoutInfer::InsertPermute( std::shared_ptr input, std::shared_ptr perm, bool is_graph_output, std::shared_ptr src_out) { auto out_spec = input->GetSpec(); if (is_graph_output) { auto out_shape = src_out->GetShape(); out_spec.SetShape(out_shape); out_spec.SetAttribute(vx::TensorAttribute::OUTPUT); } else { out_spec.SetAttribute(vx::TensorAttribute::TRANSIENT); } if (out_spec.quantization_.Type() == vx::QuantType::SYMMETRIC_PER_CHANNEL) { out_spec.quantization_.SetChannelDim( MapAxis(perm->AsStdVec(), out_spec.quantization_.ChannelDim())); } auto out_tensor = context_->infer_graph_->CreateTensor(out_spec); auto perm_op = context_->infer_graph_->CreateOperation(perm->AsStdVec()); (*perm_op).BindInput(input).BindOutput(out_tensor); return out_tensor; } std::vector> OpLayoutInfer::CreateOutputsTensor( std::shared_ptr required_pv) { std::vector> ouptuts_tensor; for (const auto& o : op_->impl()->OutputsTensor()) { auto in_shape = o->GetShape(); auto out_spec = o->GetSpec(); if (!required_pv->IsAligned()) { out_spec = out_spec.AsTransientSpec(); } auto t_infer = context_->infer_graph_->CreateTensor(out_spec); context_->UpdateTensorMap(o, t_infer); ouptuts_tensor.push_back(t_infer); } return ouptuts_tensor; } vx::PadType OpLayoutInfer::TranslatePadType(int32_t pad) { switch (pad) { case VSI_NN_PAD_AUTO: return vx::PadType::AUTO; case VSI_NN_PAD_VALID: return vx::PadType::VALID; case VSI_NN_PAD_SAME: return vx::PadType::SAME; default: return vx::PadType::AUTO; } } vx::PoolType OpLayoutInfer::TranslatePoolType(int32_t pool) { switch (pool) { case VX_CONVOLUTIONAL_NETWORK_POOLING_MAX: return vx::PoolType::MAX; case VX_CONVOLUTIONAL_NETWORK_POOLING_AVG: return vx::PoolType::AVG; case VX_CONVOLUTIONAL_NETWORK_POOLING_L2: return vx::PoolType::L2; case VX_CONVOLUTIONAL_NETWORK_POOLING_AVG_ANDROID: return vx::PoolType::AVG_ANDROID; default: return vx::PoolType::MAX; } } vx::RoundType OpLayoutInfer::TranslateRoundType(int32_t round) { switch (round) { case VSI_NN_ROUND_CEIL: return vx::RoundType::CEILING; case VSI_NN_ROUND_FLOOR: return vx::RoundType::FLOOR; default: return vx::RoundType::FLOOR; } } uint32_t OpLayoutInfer::MapAxis(const std::vector& perm, uint32_t axis) { for (uint32_t i = 0; i < perm.size(); i++) { if (axis == perm[i]) { return i; } } VSILOGE("Map axis failed."); assert(false); return perm.size() - 1; } std::shared_ptr OpLayoutInfer::AlignPermuteVectorForMutilInputs() { auto src_inputs = op_->impl()->InputsTensor(); // Suppose the inputs have same dimension rank // TODO(yzw): should choose a optimal required_pv auto required_pv = context_->GetPermuteVector(src_inputs[0]); for (const auto& i_src : src_inputs) { auto pv = context_->GetPermuteVector(i_src); auto final_pv = pv->Reverse()->Add(required_pv); if (!final_pv->IsAligned()) { auto perm_out = InsertPermute(context_->GetMapedTensor(i_src), final_pv); context_->UpdateTensorMap(i_src, perm_out); context_->SetPermuteVector(i_src, required_pv); } } return required_pv; } void OpLayoutInfer::ReverseInputsPermuteVector() { for (const auto& i_src : op_->impl()->InputsTensor()) { auto input_pv = context_->GetPermuteVector(i_src); if (!input_pv->IsAligned()) { auto perm_out = InsertPermute(context_->GetMapedTensor(i_src), input_pv->Reverse()); context_->UpdateTensorMap(i_src, perm_out); context_->SetPermuteVector(i_src, MakeShared(input_pv->Rank())); } } } } // namespace transform } // namespace tim