/**************************************************************************** * * Copyright (c) 2021 Vivante Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. * *****************************************************************************/ #include "tim/vx/context.h" #include "tim/vx/graph.h" #include "tim/vx/ops/groupedconv2d.h" #include "gtest/gtest.h" namespace { template ::testing::AssertionResult ArraysMatch(const std::vector& expected, const std::vector& actual, T abs_error){ for (size_t i = 0; i < expected.size(); ++i){ EXPECT_NEAR(expected[i], actual[i], abs_error) << "at index:" << i; } return ::testing::AssertionSuccess(); } } TEST(GroupedConv2d, shape_3_3_6_1_float_group_1_no_bias_whcn) { auto ctx = tim::vx::Context::Create(); auto graph = ctx->CreateGraph(); tim::vx::ShapeType input_shape({3,3,6,1}); tim::vx::ShapeType param_shape({3,3,6,1}); tim::vx::ShapeType output_shape({1,1,1,1}); tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, input_shape, tim::vx::TensorAttribute::INPUT); tim::vx::TensorSpec param_spec(tim::vx::DataType::FLOAT32, param_shape, tim::vx::TensorAttribute::CONSTANT); tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, output_shape, tim::vx::TensorAttribute::OUTPUT); auto input_tensor = graph->CreateTensor(input_spec); auto weight_tensor = graph->CreateTensor(param_spec); auto output_tensor = graph->CreateTensor(output_spec); std::vector in_data = { -0.50, -0.50, -0.50, 0.00, 1.00, 0.00, 0.50, 0.50, 0.50, -1.50, -1.00, -1.00, -0.50, 1.00, 0.50, 1.00, 1.00, 1.50, -2.50, -2.00, -2.00, -1.50, 1.50, 1.50, 2.00, 2.00, 2.50, -3.50, -3.00, -3.00, -2.50, 2.50, 2.50, 3.00, 3.00, 3.50, -4.50, -4.00, -4.00, -3.50, 3.50, 3.50, 4.00, 4.00, 4.50, -5.50, -5.00, -5.00, -4.50, 4.50, 4.50, 5.00, 5.00, 5.50, }; std::vector weight = { -0.50, 0.00, -0.50, -0.50, 0.00, -0.50, -0.50, 0.00, -0.50, 1.50, 1.00, -1.50, 1.50, 1.00, -1.50, 1.50, 1.00, -1.50, -2.50, -2.00, -2.50, -2.50, -2.00, -2.50, -2.50, -2.00, -2.50, 3.50, 3.00, 3.50, 3.50, 3.00, 3.50, 3.50, 3.00, 3.50, -4.50, -4.00, -4.50, -4.50, -4.00, -4.50, -4.50, -4.00, -4.50, -5.50, -5.00, 5.50, -5.50, -5.00, 5.50, -5.50, -5.00, 5.50, }; std::vector golden = { 21.0 }; EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(), in_data.size() * sizeof(float))); EXPECT_TRUE(weight_tensor->CopyDataToTensor(weight.data(), weight.size() * sizeof(float))); std::array dilations = {1,1}; std::array strides = {1,1}; auto op = graph->CreateOperation( tim::vx::PadType::VALID, strides, dilations, 1); (*op).BindInputs({input_tensor, weight_tensor}).BindOutputs({output_tensor}); EXPECT_TRUE(graph->Compile()); EXPECT_TRUE(graph->Run()); std::vector output(golden.size() * sizeof(float)); EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data())); EXPECT_TRUE(ArraysMatch(golden, output, 1e-5f)); } TEST(GroupedConv2d, shape_3_3_6_1_float_group_2_whcn) { auto ctx = tim::vx::Context::Create(); auto graph = ctx->CreateGraph(); tim::vx::ShapeType input_shape({3,3,6,1}); tim::vx::ShapeType weight_shape({3,3,3,2}); tim::vx::ShapeType bias_shape({2}); tim::vx::ShapeType output_shape({1,1,2,1}); tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, input_shape, tim::vx::TensorAttribute::INPUT); tim::vx::TensorSpec weight_spec(tim::vx::DataType::FLOAT32, weight_shape, tim::vx::TensorAttribute::CONSTANT); tim::vx::TensorSpec bias_spec(tim::vx::DataType::FLOAT32, bias_shape, tim::vx::TensorAttribute::CONSTANT); tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, output_shape, tim::vx::TensorAttribute::OUTPUT); auto input_tensor = graph->CreateTensor(input_spec); auto weight_tensor = graph->CreateTensor(weight_spec); auto bias_tensor = graph->CreateTensor(bias_spec); auto output_tensor = graph->CreateTensor(output_spec); std::vector in_data = { -0.50, -0.50, -0.50, 0.00, 1.00, 0.00, 0.50, 0.50, 0.50, -1.50, -1.00, -1.00, -0.50, 1.00, 0.50, 1.00, 1.00, 1.50, -2.50, -2.00, -2.00, -1.50, 1.50, 1.50, 2.00, 2.00, 2.50, -3.50, -3.00, -3.00, -2.50, 2.50, 2.50, 3.00, 3.00, 3.50, -4.50, -4.00, -4.00, -3.50, 3.50, 3.50, 4.00, 4.00, 4.50, -5.50, -5.00, -5.00, -4.50, 4.50, 4.50, 5.00, 5.00, 5.50, }; std::vector weight = { -0.50, 0.00, -0.50, -0.50, 0.00, -0.50, -0.50, 0.00, -0.50, 1.50, 1.00, -1.50, 1.50, 1.00, -1.50, 1.50, 1.00, -1.50, -2.50, -2.00, -2.50, -2.50, -2.00, -2.50, -2.50, -2.00, -2.50, 3.50, 3.00, 3.50, 3.50, 3.00, 3.50, 3.50, 3.00, 3.50, -4.50, -4.00, -4.50, -4.50, -4.00, -4.50, -4.50, -4.00, -4.50, -5.50, -5.00, 5.50, -5.50, -5.00, 5.50, -5.50, -5.00, 5.50, }; std::vector bias = { -1.25, 1.25, }; std::vector golden = { -6.25, 27.25, }; EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(), in_data.size() * sizeof(float))); EXPECT_TRUE(weight_tensor->CopyDataToTensor(weight.data(), weight.size() * sizeof(float))); EXPECT_TRUE(bias_tensor->CopyDataToTensor(bias.data(), bias.size() * sizeof(float))); std::array dilations = {1,1}; std::array strides = {1,1}; auto op = graph->CreateOperation( tim::vx::PadType::VALID, strides, dilations, 2); (*op).BindInputs({input_tensor, weight_tensor, bias_tensor}).BindOutputs({output_tensor}); EXPECT_TRUE(graph->Compile()); EXPECT_TRUE(graph->Run()); std::vector output(golden.size() * sizeof(float)); EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data())); EXPECT_TRUE(ArraysMatch(golden, output, 1e-5f)); } TEST(GroupedConv2d, shape_3_3_6_1_uint8_group_6_whcn) { auto ctx = tim::vx::Context::Create(); auto graph = ctx->CreateGraph(); tim::vx::ShapeType input_shape({3,3,6,1}); tim::vx::ShapeType weight_shape({2,2,1,6}); tim::vx::ShapeType bias_shape({6}); tim::vx::ShapeType output_shape({2,2,6,1}); tim::vx::Quantization input_quant(tim::vx::QuantType::ASYMMETRIC, 0.5, 10); tim::vx::Quantization weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.5, 9); tim::vx::Quantization bias_quant(tim::vx::QuantType::ASYMMETRIC, 0.25, 0); tim::vx::Quantization output_quant(tim::vx::QuantType::ASYMMETRIC, 0.25, 85); tim::vx::TensorSpec input_spec(tim::vx::DataType::UINT8, input_shape, tim::vx::TensorAttribute::INPUT, input_quant); tim::vx::TensorSpec weight_spec(tim::vx::DataType::UINT8, weight_shape, tim::vx::TensorAttribute::CONSTANT, weight_quant); tim::vx::TensorSpec bias_spec(tim::vx::DataType::INT32, bias_shape, tim::vx::TensorAttribute::CONSTANT, bias_quant); tim::vx::TensorSpec output_spec(tim::vx::DataType::UINT8, output_shape, tim::vx::TensorAttribute::OUTPUT, output_quant); auto input_tensor = graph->CreateTensor(input_spec); auto weight_tensor = graph->CreateTensor(weight_spec); auto bias_tensor = graph->CreateTensor(bias_spec); auto output_tensor = graph->CreateTensor(output_spec); std::vector in_data = { 9, 9, 9, 10, 12, 10, 11, 11, 11, 7, 8, 8, 9, 12, 11, 12, 12, 13, 5, 6, 6, 7, 13, 13, 14, 14, 15, 3, 4, 4, 5, 15, 15, 16, 16, 17, 1, 2, 2, 3, 17, 17, 18, 18, 19, 3, 0, 0, 1, 19, 19, 16, 4, 3, }; std::vector weight = { 8, 9, 8, 9, 12, 11, 12, 11, 4, 5, 4, 5, 16, 15, 16, 15, 0, 17, 0, 17, 6, 5, 6, 13, }; std::vector bias = { -24,-20,-16, 16, -4, 20, }; std::vector golden = { 62, 62, 60, 60, 53, 62, 75, 74, 113, 74, 33, 44, 11, 94, 179,150, 217, 90, 73, 0, 229,108, 111,126, }; EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(), in_data.size())); EXPECT_TRUE(weight_tensor->CopyDataToTensor(weight.data(), weight.size())); EXPECT_TRUE(bias_tensor->CopyDataToTensor(bias.data(), bias.size())); std::array dilations = {1,1}; std::array strides = {2,2}; std::array pad = {0,1,0,1}; auto op = graph->CreateOperation(pad, strides, dilations, 6); (*op).BindInputs({input_tensor, weight_tensor, bias_tensor}).BindOutputs({output_tensor}); EXPECT_TRUE(graph->Compile()); EXPECT_TRUE(graph->Run()); std::vector output(golden.size()); EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data())); EXPECT_EQ(golden, output); }