/**************************************************************************** * * Copyright (c) 2021 Vivante Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. * *****************************************************************************/ #include "tim/vx/context.h" #include "tim/vx/graph.h" #include "tim/vx/ops/resize1d.h" #include "test_utils.h" #include "gtest/gtest.h" TEST(Resize1d, shape_4_2_1_float_nearest_whcn) { auto ctx = tim::vx::Context::Create(); auto graph = ctx->CreateGraph(); tim::vx::ShapeType input_shape({4, 2, 1}); tim::vx::ShapeType output_shape({2, 2, 1}); tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, input_shape, tim::vx::TensorAttribute::INPUT); tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, output_shape, tim::vx::TensorAttribute::OUTPUT); auto input_tensor = graph->CreateTensor(input_spec); auto output_tensor = graph->CreateTensor(output_spec); std::vector in_data = { 1.f, 2.f, 3.f, 4.f, 5.f, 6.f, 7.f, 8.f, }; std::vector golden = { 1.f, 3.f, 5.f, 7.f, }; EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(), in_data.size() * sizeof(float))); auto op = graph->CreateOperation( tim::vx::ResizeType::NEAREST_NEIGHBOR, 0.6, false, false, 0); (*op).BindInputs({input_tensor}).BindOutputs({output_tensor}); EXPECT_TRUE(graph->Compile()); EXPECT_TRUE(graph->Run()); std::vector output(golden.size() * sizeof(float)); EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data())); EXPECT_TRUE(ArraysMatch(golden, output, 1e-5f)); } TEST(Resize1d, shape_4_2_1_uint8_nearest_whcn) { auto ctx = tim::vx::Context::Create(); auto graph = ctx->CreateGraph(); tim::vx::ShapeType input_shape({4, 2, 1}); tim::vx::ShapeType output_shape({2, 2, 1}); tim::vx::Quantization input_quant(tim::vx::QuantType::ASYMMETRIC, 1, 0); tim::vx::Quantization output_quant(tim::vx::QuantType::ASYMMETRIC, 1, 0); tim::vx::TensorSpec input_spec(tim::vx::DataType::UINT8, input_shape, tim::vx::TensorAttribute::INPUT, input_quant); tim::vx::TensorSpec output_spec(tim::vx::DataType::UINT8, output_shape, tim::vx::TensorAttribute::OUTPUT, output_quant); auto input_tensor = graph->CreateTensor(input_spec); auto output_tensor = graph->CreateTensor(output_spec); std::vector in_data = { 1, 2, 3, 4, 5, 6, 7, 8, }; std::vector golden = { 1, 3, 5, 7, }; EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(), in_data.size())); auto op = graph->CreateOperation( tim::vx::ResizeType::NEAREST_NEIGHBOR, 0.6, false, false, 0); (*op).BindInputs({input_tensor}).BindOutputs({output_tensor}); EXPECT_TRUE(graph->Compile()); EXPECT_TRUE(graph->Run()); std::vector output(golden.size()); EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data())); EXPECT_EQ(golden, output); } TEST(Resize1d, shape_5_1_1_float_bilinear_align_corners_whcn) { auto ctx = tim::vx::Context::Create(); auto graph = ctx->CreateGraph(); tim::vx::ShapeType input_shape({5, 1, 1}); tim::vx::ShapeType output_shape({7, 1, 1}); tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, input_shape, tim::vx::TensorAttribute::INPUT); tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, output_shape, tim::vx::TensorAttribute::OUTPUT); auto input_tensor = graph->CreateTensor(input_spec); auto output_tensor = graph->CreateTensor(output_spec); std::vector in_data = { 1.f, 2.f, 3.f, 4.f, 5.f, }; std::vector golden = { 1.f, 1.66666f, 2.33333f, 3.f, 3.66666, 4.33333f, 5.f }; EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(), in_data.size() * sizeof(float))); auto op = graph->CreateOperation( tim::vx::ResizeType::BILINEAR, 0, true, false, 7); (*op).BindInputs({input_tensor}).BindOutputs({output_tensor}); EXPECT_TRUE(graph->Compile()); EXPECT_TRUE(graph->Run()); std::vector output(golden.size() * sizeof(float)); EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data())); EXPECT_TRUE(ArraysMatch(golden, output, 1e-5f)); }