/**************************************************************************** * * Copyright (c) 2022 Vivante Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. * *****************************************************************************/ #include "tim/vx/context.h" #include "tim/vx/graph.h" #include "tim/vx/ops.h" #include "test_utils.h" #include "gtest/gtest.h" TEST(Reduce_sum, NotKeepDims) { auto ctx = tim::vx::Context::Create(); auto graph = ctx->CreateGraph(); tim::vx::ShapeType input_shape({2, 3, 1}); tim::vx::ShapeType output_shape({2, 1}); tim::vx::Quantization quant(tim::vx::QuantType::ASYMMETRIC, 0.00784313772, 127); tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, input_shape, tim::vx::TensorAttribute::INPUT); tim::vx::TensorSpec dc_spec1(tim::vx::DataType::UINT8, {0, 0, 0}, tim::vx::TensorAttribute::TRANSIENT, quant); auto input_tensor = graph->CreateTensor(input_spec); auto dc_tensor1 = graph->CreateTensor(dc_spec1); auto dc1_op = graph->CreateOperation(); (*dc1_op).BindInputs({input_tensor}).BindOutputs({dc_tensor1}); tim::vx::TensorSpec reduce_sum_spec(tim::vx::DataType::UINT8, {0, 0, 0}, tim::vx::TensorAttribute::TRANSIENT, quant); auto reduce_sum_out = graph->CreateTensor(reduce_sum_spec); std::vector axis = {1}; auto reduce_sum = graph->CreateOperation(axis, false); (*reduce_sum).BindInputs({dc_tensor1}).BindOutputs({reduce_sum_out}); tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, output_shape, tim::vx::TensorAttribute::OUTPUT); auto output_tensor = graph->CreateTensor(output_spec); auto dc2_op = graph->CreateOperation(); (*dc2_op).BindInputs({reduce_sum_out}).BindOutputs({output_tensor}); std::vector in_data = {0.4, 0.2, 0.3, 0.4, 0.5, 0.6}; std::vector golden = { 1.003922, 1.003922, }; EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(), in_data.size())); EXPECT_TRUE(graph->Compile()); EXPECT_TRUE(graph->Run()); std::vector output(golden.size()); EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data())); EXPECT_TRUE(ArraysMatch(golden, output, 1e-5f)); } TEST(Reduce_sum, KeepDims) { auto ctx = tim::vx::Context::Create(); auto graph = ctx->CreateGraph(); tim::vx::ShapeType input_shape({2, 3}); tim::vx::ShapeType output_shape({1, 3}); tim::vx::Quantization quant(tim::vx::QuantType::ASYMMETRIC, 0.00784313772, 127); tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, input_shape, tim::vx::TensorAttribute::INPUT); tim::vx::TensorSpec dc_spec1(tim::vx::DataType::UINT8, {0, 0, 0}, tim::vx::TensorAttribute::TRANSIENT, quant); auto input_tensor = graph->CreateTensor(input_spec); auto dc_tensor1 = graph->CreateTensor(dc_spec1); auto dc1_op = graph->CreateOperation(); (*dc1_op).BindInputs({input_tensor}).BindOutputs({dc_tensor1}); tim::vx::TensorSpec reduce_sum_spec(tim::vx::DataType::UINT8, {0, 0, 0}, tim::vx::TensorAttribute::TRANSIENT, quant); auto reduce_sum_out = graph->CreateTensor(reduce_sum_spec); std::vector axis = {0}; auto reduce_sum = graph->CreateOperation(axis, true); (*reduce_sum).BindInputs({dc_tensor1}).BindOutputs({reduce_sum_out}); tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, output_shape, tim::vx::TensorAttribute::OUTPUT); auto output_tensor = graph->CreateTensor(output_spec); auto dc2_op = graph->CreateOperation(); (*dc2_op).BindInputs({reduce_sum_out}).BindOutputs({output_tensor}); std::vector in_data = {0.4, 0.2, 0.3, 0.4, 0.5, 0.6}; std::vector golden = { 0.596078, 0.698039, 1.003922, }; EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(), in_data.size())); EXPECT_TRUE(graph->Compile()); EXPECT_TRUE(graph->Run()); std::vector output(golden.size()); EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data())); EXPECT_TRUE(ArraysMatch(golden, output, 1e-5f)); }