/**************************************************************************** * * Copyright (c) 2020-2023 Vivante Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. * *****************************************************************************/ #include "tim/vx/context.h" #include "tim/vx/graph.h" #include "tim/vx/ops/localresponsenormalization.h" #include "test_utils.h" #include "gtest/gtest.h" TEST(localresponsenormalization, axis_0_shape_6_1_1_1_float) { auto ctx = tim::vx::Context::Create(); auto graph = ctx->CreateGraph(); tim::vx::ShapeType io_shape({6, 1, 1, 1}); tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, io_shape, tim::vx::TensorAttribute::INPUT); tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, io_shape, tim::vx::TensorAttribute::OUTPUT); auto input_tensor = graph->CreateTensor(input_spec); auto output_tensor = graph->CreateTensor(output_spec); std::vector in_data = {-1.1, 0.6, 0.7, 1.2, -0.7, 0.1}; std::vector golden = {-0.264926, 0.125109, 0.140112, 0.267261, -0.161788, 0.0244266}; EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(), in_data.size() * sizeof(float))); int radius = 2; int size = radius * 2; float alpha = 4.0, beta = 0.5, bias = 9.0; auto op = graph->CreateOperation( size, alpha, beta, bias, 0); (*op).BindInputs({input_tensor}).BindOutputs({output_tensor}); EXPECT_TRUE(graph->Compile()); EXPECT_TRUE(graph->Run()); std::vector output(golden.size()); EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data())); EXPECT_TRUE(ArraysMatch(golden, output, 1e-5f)); } TEST(localresponsenormalization, axis_1_shape_2_6_float) { auto ctx = tim::vx::Context::Create(); auto graph = ctx->CreateGraph(); tim::vx::ShapeType io_shape({2, 6}); tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, io_shape, tim::vx::TensorAttribute::INPUT); tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, io_shape, tim::vx::TensorAttribute::OUTPUT); auto input_tensor = graph->CreateTensor(input_spec); auto output_tensor = graph->CreateTensor(output_spec); std::vector in_data = {-1.100000023841858f, -1.100000023841858f, 0.6000000238418579f, 0.6000000238418579f, 0.699999988079071f, 0.699999988079071f, 1.2000000476837158f, 1.2000000476837158f, -0.699999988079071f, -0.699999988079071f, 0.10000000149011612f, 0.10000000149011612f}; std::vector golden = {-0.26492568850517273f, -0.26492568850517273f, 0.12510864436626434f, 0.12510864436626434f, 0.14011213183403015f, 0.14011213183403015f, 0.267261266708374f, 0.267261266708374f, -0.16178755462169647f, -0.16178755462169647f, 0.024426599964499474f, 0.024426599964499474f}; EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(), in_data.size() * sizeof(float))); int radius = 2; int size = radius * 2; float alpha = 4.0, beta = 0.5, bias = 9.0; auto op = graph->CreateOperation( size, alpha, beta, bias, 1); (*op).BindInputs({input_tensor}).BindOutputs({output_tensor}); EXPECT_TRUE(graph->Compile()); EXPECT_TRUE(graph->Run()); std::vector output(golden.size()); EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data())); EXPECT_TRUE(ArraysMatch(golden, output, 1e-5f)); }