/**************************************************************************** * * Copyright (c) 2021 Vivante Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. * *****************************************************************************/ #if VSI_FEAT_OP_MAXPOOLWITHARGMAX #include "tim/vx/context.h" #include "tim/vx/graph.h" #include "tim/vx/ops/maxpoolwithargmax2.h" #include "tim/vx/ops/scatternd.h" #include "tim/vx/ops/reshape.h" #include "gtest/gtest.h" TEST(MaxpoolWithArgmax2, without_overlay) { auto ctx = tim::vx::Context::Create(); auto graph = ctx->CreateGraph(); tim::vx::ShapeType in_shape({6, 4, 1, 1}); tim::vx::ShapeType out_shape({2, 2, 1, 1}); tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, in_shape, tim::vx::TensorAttribute::INPUT); tim::vx::TensorSpec output_spec_indices(tim::vx::DataType::INT32, out_shape, tim::vx::TensorAttribute::OUTPUT); tim::vx::TensorSpec output_spec_values(tim::vx::DataType::FLOAT32, out_shape, tim::vx::TensorAttribute::OUTPUT); auto input_tensor = graph->CreateTensor(input_spec); auto output_tensor_indices = graph->CreateTensor(output_spec_indices); auto output_tensor_values = graph->CreateTensor(output_spec_values); std::vector in_data = { 7, 2, 5, 3, 10, 2, 3, 8, 9, 3, 4, 2, 1, 5, 7, 5, 6, 1, 0, 6, 2, 7, 2, 8}; std::vector values_golden = { 9, 10, 7, 8 }; std::vector indices_golden = { 8, 4, 14, 23 }; EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(), in_data.size() * 4)); std::array ksize = {3, 2}; std::array stride = {3, 2}; auto op = graph->CreateOperation( tim::vx::PadType::VALID, ksize, stride); (*op).BindInputs({input_tensor}).BindOutputs({output_tensor_values, output_tensor_indices}); EXPECT_TRUE(graph->Compile()); EXPECT_TRUE(graph->Run()); std::vector output_values(4); std::vector output_indices(4); EXPECT_TRUE(output_tensor_values->CopyDataFromTensor(output_values.data())); EXPECT_TRUE(output_tensor_indices->CopyDataFromTensor(output_indices.data())); EXPECT_EQ(values_golden, output_values); EXPECT_EQ(indices_golden, output_indices); } TEST(MaxpoolWithArgmax2, with_overlay) { auto ctx = tim::vx::Context::Create(); auto graph = ctx->CreateGraph(); tim::vx::ShapeType in_shape({5, 4, 1, 1}); tim::vx::ShapeType out_shape({2, 2, 1, 1}); tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, in_shape, tim::vx::TensorAttribute::INPUT); tim::vx::TensorSpec output_spec_indices(tim::vx::DataType::INT32, out_shape, tim::vx::TensorAttribute::OUTPUT); tim::vx::TensorSpec output_spec_values(tim::vx::DataType::FLOAT32, out_shape, tim::vx::TensorAttribute::OUTPUT); auto input_tensor = graph->CreateTensor(input_spec); auto output_tensor_indices = graph->CreateTensor(output_spec_indices); auto output_tensor_values = graph->CreateTensor(output_spec_values); std::vector in_data = { 7, 2, 5, 3, 8, 3, 8, 9, 3, 4, 1, 5, 7, 5, 6, 0, 6, 2, 10, 2}; std::vector values_golden = { 9, 9, 7, 10 }; std::vector indices_golden = { 7, 7, 12, 18 }; EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(), in_data.size() * 4)); std::array ksize = {3, 2}; std::array stride = {2, 2}; auto op = graph->CreateOperation( tim::vx::PadType::VALID, ksize, stride); (*op).BindInputs({input_tensor}).BindOutputs({output_tensor_values, output_tensor_indices}); EXPECT_TRUE(graph->Compile()); EXPECT_TRUE(graph->Run()); std::vector output_values(4); std::vector output_indices(4); EXPECT_TRUE(output_tensor_values->CopyDataFromTensor(output_values.data())); EXPECT_TRUE(output_tensor_indices->CopyDataFromTensor(output_indices.data())); EXPECT_EQ(values_golden, output_values); EXPECT_EQ(indices_golden, output_indices); } TEST(MaxpoolGrad, without_overlay) { auto ctx = tim::vx::Context::Create(); auto graph = ctx->CreateGraph(); tim::vx::ShapeType in_shape({6, 4, 1, 1}); tim::vx::ShapeType out_shape({2, 2, 1, 1}); tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, in_shape, tim::vx::TensorAttribute::INPUT); tim::vx::TensorSpec output_spec_indices(tim::vx::DataType::INT32, out_shape, tim::vx::TensorAttribute::TRANSIENT); tim::vx::TensorSpec output_spec_values(tim::vx::DataType::FLOAT32, out_shape, tim::vx::TensorAttribute::OUTPUT); auto input_tensor = graph->CreateTensor(input_spec); auto output_tensor_indices = graph->CreateTensor(output_spec_indices); auto output_tensor_values = graph->CreateTensor(output_spec_values); auto output_tensor = graph->CreateTensor(input_spec); std::vector in_data = { 7, 2, 5, 3, 10, 2, 3, 8, 9, 3, 4, 2, 1, 5, 7, 5, 6, 1, 0, 6, 2, 7, 2, 8}; std::vector updates_data = { 2, 6, 3, 1 }; std::vector golden = { 0, 0, 0, 0, 6, 0, 0, 0, 2, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 1}; EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(), in_data.size() * 4)); std::array ksize = {3, 2}; std::array stride = {3, 2}; auto op = graph->CreateOperation( tim::vx::PadType::VALID, ksize, stride); (*op).BindInputs({input_tensor}).BindOutputs({output_tensor_values, output_tensor_indices}); std::vector shape = {4}; tim::vx::TensorSpec input_spec_indices(tim::vx::DataType::INT32, shape, tim::vx::TensorAttribute::TRANSIENT); auto input_tensor_indices = graph->CreateTensor(input_spec_indices); auto op1 = graph->CreateOperation(shape); (*op1).BindInputs({output_tensor_indices}).BindOutputs({input_tensor_indices}); std::vector out2_shape = {24}; tim::vx::TensorSpec updates_spec(tim::vx::DataType::FLOAT32, shape, tim::vx::TensorAttribute::INPUT); tim::vx::TensorSpec output2_spec(tim::vx::DataType::FLOAT32, out2_shape, tim::vx::TensorAttribute::TRANSIENT); auto updates_tensor = graph->CreateTensor(updates_spec); auto output2_tensor = graph->CreateTensor(output2_spec); EXPECT_TRUE(updates_tensor->CopyDataToTensor( updates_data.data(), updates_data.size() * 4)); auto op2 = graph->CreateOperation(out2_shape); (*op2).BindInputs({input_tensor_indices, updates_tensor}).BindOutputs({output2_tensor}); auto op3 = graph->CreateOperation(in_shape); (*op3).BindInputs({output2_tensor}).BindOutputs({output_tensor}); EXPECT_TRUE(graph->Compile()); EXPECT_TRUE(graph->Run()); std::vector output_values(24); EXPECT_TRUE(output_tensor->CopyDataFromTensor(output_values.data())); EXPECT_EQ(golden, output_values); } TEST(MaxpoolGrad, with_overlay) { auto ctx = tim::vx::Context::Create(); auto graph = ctx->CreateGraph(); tim::vx::ShapeType in_shape({5, 4, 1, 1}); tim::vx::ShapeType out_shape({2, 2, 1, 1}); tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, in_shape, tim::vx::TensorAttribute::INPUT); tim::vx::TensorSpec output_spec_indices(tim::vx::DataType::INT32, out_shape, tim::vx::TensorAttribute::TRANSIENT); tim::vx::TensorSpec output_spec_values(tim::vx::DataType::FLOAT32, out_shape, tim::vx::TensorAttribute::OUTPUT); auto input_tensor = graph->CreateTensor(input_spec); auto output_tensor_indices = graph->CreateTensor(output_spec_indices); auto output_tensor_values = graph->CreateTensor(output_spec_values); auto output_tensor = graph->CreateTensor(input_spec); std::vector in_data = { 7, 2, 5, 3, 8, 3, 8, 9, 3, 4, 1, 5, 7, 5, 6, 0, 6, 2, 10, 2}; std::vector updates_data = { 2, 6, 3, 1 }; std::vector golden = { 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 1, 0}; EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(), in_data.size() * 4)); std::array ksize = {3, 2}; std::array stride = {2, 2}; auto op = graph->CreateOperation( tim::vx::PadType::VALID, ksize, stride); (*op).BindInputs({input_tensor}).BindOutputs({output_tensor_values, output_tensor_indices}); std::vector shape = {4}; tim::vx::TensorSpec input_spec_indices(tim::vx::DataType::INT32, shape, tim::vx::TensorAttribute::TRANSIENT); auto input_tensor_indices = graph->CreateTensor(input_spec_indices); auto op1 = graph->CreateOperation(shape); (*op1).BindInputs({output_tensor_indices}).BindOutputs({input_tensor_indices}); std::vector out2_shape = {20}; tim::vx::TensorSpec updates_spec(tim::vx::DataType::FLOAT32, shape, tim::vx::TensorAttribute::INPUT); tim::vx::TensorSpec output2_spec(tim::vx::DataType::FLOAT32, out2_shape, tim::vx::TensorAttribute::TRANSIENT); auto updates_tensor = graph->CreateTensor(updates_spec); auto output2_tensor = graph->CreateTensor(output2_spec); EXPECT_TRUE(updates_tensor->CopyDataToTensor( updates_data.data(), updates_data.size() * 4)); auto op2 = graph->CreateOperation(out2_shape); (*op2).BindInputs({input_tensor_indices, updates_tensor}).BindOutputs({output2_tensor}); auto op3 = graph->CreateOperation(in_shape); (*op3).BindInputs({output2_tensor}).BindOutputs({output_tensor}); EXPECT_TRUE(graph->Compile()); EXPECT_TRUE(graph->Run()); std::vector output_values(20); EXPECT_TRUE(output_tensor->CopyDataFromTensor(output_values.data())); EXPECT_EQ(golden, output_values); } TEST(MaxpoolGrad, with_overlay_multi_channel_multi_batch) { auto ctx = tim::vx::Context::Create(); auto graph = ctx->CreateGraph(); tim::vx::ShapeType in_shape({5, 4, 2, 2}); tim::vx::ShapeType out_shape({2, 2, 2, 2}); tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, in_shape, tim::vx::TensorAttribute::INPUT); tim::vx::TensorSpec output_spec_indices(tim::vx::DataType::INT32, out_shape, tim::vx::TensorAttribute::TRANSIENT); tim::vx::TensorSpec output_spec_values(tim::vx::DataType::FLOAT32, out_shape, tim::vx::TensorAttribute::OUTPUT); auto input_tensor = graph->CreateTensor(input_spec); auto output_tensor_indices = graph->CreateTensor(output_spec_indices); auto output_tensor_values = graph->CreateTensor(output_spec_values); auto output_tensor = graph->CreateTensor(input_spec); std::vector in_data = { 7, 2, 5, 3, 8, 3, 8, 9, 3, 4, 1, 5, 7, 5, 6, 0, 6, 2, 10, 2, 7, 2, 5, 3, 8, 3, 8, 9, 3, 4, 1, 5, 7, 5, 6, 0, 6, 2, 10, 2, 7, 2, 5, 3, 8, 3, 8, 9, 3, 4, 1, 5, 7, 5, 6, 0, 6, 2, 10, 2, 7, 2, 5, 3, 8, 3, 8, 9, 3, 4, 1, 5, 7, 5, 6, 0, 6, 2, 10, 2}; std::vector updates_data = { 2, 6, 3, 1, 2, 6, 3, 1, 2, 6, 3, 1, 2, 6, 3, 1, }; std::vector golden = { 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 1, 0}; EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(), in_data.size() * 4)); std::array ksize = {3, 2}; std::array stride = {2, 2}; auto op = graph->CreateOperation( tim::vx::PadType::VALID, ksize, stride); (*op).BindInputs({input_tensor}).BindOutputs({output_tensor_values, output_tensor_indices}); std::vector shape = {16}; tim::vx::TensorSpec input_spec_indices(tim::vx::DataType::INT32, shape, tim::vx::TensorAttribute::TRANSIENT); auto input_tensor_indices = graph->CreateTensor(input_spec_indices); auto op1 = graph->CreateOperation(shape); (*op1).BindInputs({output_tensor_indices}).BindOutputs({input_tensor_indices}); std::vector out2_shape = {80}; tim::vx::TensorSpec updates_spec(tim::vx::DataType::FLOAT32, shape, tim::vx::TensorAttribute::INPUT); tim::vx::TensorSpec output2_spec(tim::vx::DataType::FLOAT32, out2_shape, tim::vx::TensorAttribute::TRANSIENT); auto updates_tensor = graph->CreateTensor(updates_spec); auto output2_tensor = graph->CreateTensor(output2_spec); EXPECT_TRUE(updates_tensor->CopyDataToTensor( updates_data.data(), updates_data.size() * 4)); auto op2 = graph->CreateOperation(out2_shape); (*op2).BindInputs({input_tensor_indices, updates_tensor}).BindOutputs({output2_tensor}); auto op3 = graph->CreateOperation(in_shape); (*op3).BindInputs({output2_tensor}).BindOutputs({output_tensor}); EXPECT_TRUE(graph->Compile()); EXPECT_TRUE(graph->Run()); std::vector output_values(80); EXPECT_TRUE(output_tensor->CopyDataFromTensor(output_values.data())); EXPECT_EQ(golden, output_values); } #endif //(VSI_FEAT_OP_MAXPOOLWITHARGMAX)