/**************************************************************************** * * Copyright (c) 2021 Vivante Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. * *****************************************************************************/ #include "tim/vx/context.h" #include "tim/vx/graph.h" #include "tim/vx/ops/maxpoolgrad.h" #include "tim/vx/ops/scatternd.h" #include "tim/vx/ops/reshape.h" #include "gtest/gtest.h" TEST(Fuse_MaxpoolGrad, without_overlay) { auto ctx = tim::vx::Context::Create(); auto graph = ctx->CreateGraph(); tim::vx::ShapeType in_shape({6, 4, 1, 1}); tim::vx::ShapeType updates_shape({2, 2, 1, 1}); tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, in_shape, tim::vx::TensorAttribute::INPUT); tim::vx::TensorSpec updates_spec(tim::vx::DataType::FLOAT32, updates_shape, tim::vx::TensorAttribute::INPUT); tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, in_shape, tim::vx::TensorAttribute::OUTPUT); auto input_tensor = graph->CreateTensor(input_spec); auto updates_tensor = graph->CreateTensor(updates_spec); auto output_tensor = graph->CreateTensor(output_spec); std::vector in_data = { 7, 2, 5, 3, 10, 2, 3, 8, 9, 3, 4, 2, 1, 5, 7, 5, 6, 1, 0, 6, 2, 7, 2, 8}; std::vector updates_data = { 2, 6, 3, 1 }; std::vector golden = { 0, 0, 0, 0, 6, 0, 0, 0, 2, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 1}; EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(), in_data.size() * sizeof(float))); EXPECT_TRUE(updates_tensor->CopyDataToTensor(updates_data.data(), updates_data.size() * sizeof(float))); std::array ksize = {3, 2}; std::array stride = {3, 2}; auto op = graph->CreateOperation( tim::vx::PadType::VALID, ksize, stride); (*op).BindInputs({input_tensor, updates_tensor}).BindOutputs({output_tensor}); EXPECT_TRUE(graph->Compile()); EXPECT_TRUE(graph->Run()); std::vector output_values(golden.size()); EXPECT_TRUE(output_tensor->CopyDataFromTensor(output_values.data())); EXPECT_EQ(golden, output_values); } TEST(Fuse_MaxpoolGrad, with_overlay) { auto ctx = tim::vx::Context::Create(); auto graph = ctx->CreateGraph(); tim::vx::ShapeType in_shape({5, 4, 1, 1}); tim::vx::ShapeType updates_shape({2, 2, 1, 1}); tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, in_shape, tim::vx::TensorAttribute::INPUT); tim::vx::TensorSpec updates_spec(tim::vx::DataType::FLOAT32, updates_shape, tim::vx::TensorAttribute::INPUT); tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, in_shape, tim::vx::TensorAttribute::OUTPUT); auto input_tensor = graph->CreateTensor(input_spec); auto updates_tensor = graph->CreateTensor(updates_spec); auto output_tensor = graph->CreateTensor(input_spec); std::vector in_data = { 7, 2, 5, 3, 8, 3, 8, 9, 3, 4, 1, 5, 7, 5, 6, 0, 6, 2, 10, 2}; std::vector updates_data = { 2, 6, 3, 1 }; std::vector golden = { 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 1, 0}; EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(), in_data.size() * sizeof(float))); EXPECT_TRUE(updates_tensor->CopyDataToTensor(updates_data.data(), updates_data.size() * sizeof(float))); std::array ksize = {3, 2}; std::array stride = {2, 2}; auto op = graph->CreateOperation( tim::vx::PadType::VALID, ksize, stride); (*op).BindInputs({input_tensor, updates_tensor}).BindOutputs({output_tensor}); EXPECT_TRUE(graph->Compile()); EXPECT_TRUE(graph->Run()); std::vector output_values(golden.size()); EXPECT_TRUE(output_tensor->CopyDataFromTensor(output_values.data())); EXPECT_EQ(golden, output_values); } TEST(Fuse_MaxpoolGrad, with_overlay_multi_channel_multi_batch) { auto ctx = tim::vx::Context::Create(); auto graph = ctx->CreateGraph(); tim::vx::ShapeType in_shape({5, 4, 2, 2}); tim::vx::ShapeType updates_shape({2, 2, 2, 2}); tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, in_shape, tim::vx::TensorAttribute::INPUT); tim::vx::TensorSpec updates_spec(tim::vx::DataType::FLOAT32, updates_shape, tim::vx::TensorAttribute::INPUT); tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, in_shape, tim::vx::TensorAttribute::OUTPUT); auto input_tensor = graph->CreateTensor(input_spec); auto updates_tensor = graph->CreateTensor(updates_spec); auto output_tensor = graph->CreateTensor(input_spec); std::vector in_data = { 7, 2, 5, 3, 8, 3, 8, 9, 3, 4, 1, 5, 7, 5, 6, 0, 6, 2, 10, 2, 7, 2, 5, 3, 8, 3, 8, 9, 3, 4, 1, 5, 7, 5, 6, 0, 6, 2, 10, 2, 7, 2, 5, 3, 8, 3, 8, 9, 3, 4, 1, 5, 7, 5, 6, 0, 6, 2, 10, 2, 7, 2, 5, 3, 8, 3, 8, 9, 3, 4, 1, 5, 7, 5, 6, 0, 6, 2, 10, 2}; std::vector updates_data = { 2, 6, 3, 1, 2, 6, 3, 1, 2, 6, 3, 1, 2, 6, 3, 1, }; std::vector golden = { 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 1, 0}; EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(), in_data.size() * sizeof(float))); EXPECT_TRUE(updates_tensor->CopyDataToTensor(updates_data.data(), updates_data.size() * sizeof(float))); std::array ksize = {3, 2}; std::array stride = {2, 2}; auto op = graph->CreateOperation( tim::vx::PadType::VALID, ksize, stride); (*op).BindInputs({input_tensor, updates_tensor}).BindOutputs({output_tensor}); EXPECT_TRUE(graph->Compile()); EXPECT_TRUE(graph->Run()); std::vector output_values(golden.size()); EXPECT_TRUE(output_tensor->CopyDataFromTensor(output_values.data())); EXPECT_EQ(golden, output_values); }