/**************************************************************************** * * Copyright (c) 2020-2023 Vivante Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. * *****************************************************************************/ #include #include #include #include #include #include #include #include #include #include "lenet_asymu8_weights.h" #include "tim/vx/context.h" #include "tim/vx/graph.h" #include "tim/vx/operation.h" #include "tim/vx/ops/activations.h" #include "tim/vx/ops/conv2d.h" #include "tim/vx/ops/fullyconnected.h" #include "tim/vx/ops/pool2d.h" #include "tim/vx/ops/softmax.h" #include "tim/vx/tensor.h" std::vector input_data = { 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 2, 0, 0, 8, 0, 3, 0, 7, 0, 2, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 1, 1, 0, 14, 0, 0, 3, 0, 2, 4, 0, 0, 0, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 3, 0, 0, 0, 5, 0, 4, 0, 0, 0, 0, 10, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 5, 0, 2, 0, 9, 0, 12, 2, 0, 5, 1, 0, 0, 2, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 33, 0, 0, 155, 186, 55, 17, 22, 0, 0, 3, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 167, 253, 255, 235, 255, 240, 134, 36, 0, 6, 1, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 6, 87, 240, 251, 254, 254, 237, 255, 252, 191, 27, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 19, 226, 255, 235, 255, 255, 254, 242, 255, 255, 68, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 1, 58, 254, 255, 158, 0, 2, 47, 173, 253, 247, 255, 65, 4, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 162, 240, 248, 92, 8, 0, 13, 0, 88, 249, 244, 148, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 17, 64, 244, 255, 210, 0, 0, 1, 2, 0, 52, 223, 255, 223, 0, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 144, 245, 255, 142, 0, 4, 9, 0, 6, 0, 37, 222, 226, 42, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 73, 255, 243, 104, 0, 0, 0, 0, 11, 0, 0, 0, 235, 242, 101, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 133, 245, 226, 12, 4, 15, 0, 0, 0, 0, 24, 0, 235, 246, 41, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 236, 245, 152, 0, 10, 0, 0, 0, 0, 6, 0, 28, 227, 239, 1, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 227, 240, 53, 4, 0, 0, 24, 0, 1, 0, 8, 181, 249, 177, 0, 2, 0, 0, 0, 0, 4, 0, 6, 1, 5, 0, 0, 87, 246, 219, 14, 0, 0, 2, 0, 10, 7, 0, 134, 255, 249, 104, 4, 0, 0, 0, 0, 0, 8, 0, 3, 0, 0, 0, 4, 89, 255, 228, 0, 11, 0, 8, 14, 0, 0, 100, 250, 248, 236, 0, 0, 8, 0, 0, 0, 0, 5, 0, 2, 0, 0, 2, 6, 68, 250, 228, 6, 6, 0, 0, 1, 0, 140, 240, 253, 238, 51, 31, 0, 3, 0, 0, 0, 0, 0, 0, 5, 0, 0, 2, 0, 26, 215, 255, 119, 0, 21, 1, 40, 156, 233, 244, 239, 103, 0, 6, 6, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 225, 251, 240, 141, 118, 139, 222, 244, 255, 249, 112, 17, 0, 0, 8, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 84, 245, 255, 247, 255, 249, 255, 255, 249, 132, 11, 0, 9, 3, 1, 1, 0, 0, 0, 0, 2, 0, 0, 1, 0, 0, 6, 1, 0, 166, 236, 255, 255, 248, 249, 248, 72, 0, 0, 16, 0, 16, 0, 4, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 4, 0, 0, 20, 106, 126, 188, 190, 112, 28, 0, 21, 0, 1, 2, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; std::mutex vsi_mutex; struct WorkerThread { const uint64_t thread_id; WorkerThread(const uint64_t id) : thread_id(id){}; void operator()() { std::cout << "THREAD " << thread_id << ": Start process." << std::endl; try { int ret = 0; ret = RunGraph(thread_id); std::cout << "THREAD " << thread_id << ": RunGraph status " << ret << std::endl; } catch (const std::exception& e) { std::cout << "THREAD " << thread_id << " failed: " << e.what() << std::endl; return; } } private: int RunGraph(uint64_t thread_id); }; template static void printTopN(const T* prob, int outputCount, int topNum) { std::vector> data; for (int i = 0; i < outputCount; i++) { data.push_back(std::make_tuple(i, prob[i])); } std::sort(data.begin(), data.end(), [](auto& a, auto& b) { return std::get<1>(a) > std::get<1>(b); }); std::cout << " --- Top" << topNum << " ---" << std::endl; for (int i = 0; i < topNum; i++) { std::cout << std::setw(3) << std::get<0>(data[i]) << ": " << std::fixed << std::setprecision(6) << std::get<1>(data[i]) << std::endl; } } int WorkerThread::RunGraph(uint64_t thread_id) { std::shared_ptr context = nullptr; std::shared_ptr graph = nullptr; std::shared_ptr input; std::shared_ptr output; std::vector output_data; { // start lock std::lock_guard lock(vsi_mutex); context = tim::vx::Context::Create(); graph = context->CreateGraph(); std::cout << "THREAD " << thread_id << ": Creating graph" << std::endl; tim::vx::ShapeType input_shape({28, 28, 1, 1}); tim::vx::Quantization input_quant(tim::vx::QuantType::ASYMMETRIC, 0.00390625f, 0); tim::vx::TensorSpec input_spec(tim::vx::DataType::UINT8, input_shape, tim::vx::TensorAttribute::INPUT, input_quant); input = graph->CreateTensor(input_spec); tim::vx::ShapeType conv1_weight_shape({5, 5, 1, 20}); tim::vx::Quantization conv1_weighteight_quant( tim::vx::QuantType::ASYMMETRIC, 0.00336234f, 119); tim::vx::TensorSpec conv1_weighteight_spec( tim::vx::DataType::UINT8, conv1_weight_shape, tim::vx::TensorAttribute::CONSTANT, conv1_weighteight_quant); auto conv1_weight = graph->CreateTensor(conv1_weighteight_spec, &lenet_weights[0]); tim::vx::ShapeType conv1_bias_shape({20}); tim::vx::Quantization conv1_bias_quant(tim::vx::QuantType::ASYMMETRIC, 1.313e-05f, 0); tim::vx::TensorSpec conv1_bias_spec( tim::vx::DataType::INT32, conv1_bias_shape, tim::vx::TensorAttribute::CONSTANT, conv1_bias_quant); auto conv1_bias = graph->CreateTensor(conv1_bias_spec, &lenet_weights[500]); tim::vx::Quantization conv1_output_quant(tim::vx::QuantType::ASYMMETRIC, 0.01928069f, 140); tim::vx::TensorSpec conv1_output_spec(tim::vx::DataType::UINT8, {}, tim::vx::TensorAttribute::TRANSIENT, conv1_output_quant); auto conv1_output = graph->CreateTensor(conv1_output_spec); tim::vx::Quantization pool1_output_quant(tim::vx::QuantType::ASYMMETRIC, 0.01928069f, 140); tim::vx::TensorSpec pool1_output_spec(tim::vx::DataType::UINT8, {}, tim::vx::TensorAttribute::TRANSIENT, pool1_output_quant); auto pool1_output = graph->CreateTensor(pool1_output_spec); tim::vx::ShapeType conv2_weight_shape({5, 5, 20, 50}); tim::vx::Quantization conv2_weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.0011482f, 128); tim::vx::TensorSpec conv2_weight_spec( tim::vx::DataType::UINT8, conv2_weight_shape, tim::vx::TensorAttribute::CONSTANT, conv2_weight_quant); auto conv2_weight = graph->CreateTensor(conv2_weight_spec, &lenet_weights[580]); tim::vx::ShapeType conv2_bias_shape({50}); tim::vx::Quantization conv2_bias_quant(tim::vx::QuantType::ASYMMETRIC, 2.214e-05f, 0); tim::vx::TensorSpec conv2_bias_spec( tim::vx::DataType::INT32, conv2_bias_shape, tim::vx::TensorAttribute::CONSTANT, conv2_bias_quant); auto conv2_bias = graph->CreateTensor(conv2_bias_spec, &lenet_weights[25580]); tim::vx::Quantization conv2_output_quant(tim::vx::QuantType::ASYMMETRIC, 0.04075872f, 141); tim::vx::TensorSpec conv2_output_spec(tim::vx::DataType::UINT8, {}, tim::vx::TensorAttribute::TRANSIENT, conv2_output_quant); auto conv2_output = graph->CreateTensor(conv2_output_spec); tim::vx::Quantization pool2_output_quant(tim::vx::QuantType::ASYMMETRIC, 0.04075872f, 141); tim::vx::TensorSpec pool2_output_spec(tim::vx::DataType::UINT8, {}, tim::vx::TensorAttribute::TRANSIENT, pool2_output_quant); auto pool2_output = graph->CreateTensor(pool2_output_spec); tim::vx::ShapeType fc3_weight_shape({800, 500}); tim::vx::Quantization fc3_weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.00073548f, 130); tim::vx::TensorSpec fc3_weight_spec( tim::vx::DataType::UINT8, fc3_weight_shape, tim::vx::TensorAttribute::CONSTANT, fc3_weight_quant); auto fc3_weight = graph->CreateTensor(fc3_weight_spec, &lenet_weights[25780]); tim::vx::ShapeType fc3_bias_shape({500}); tim::vx::Quantization fc3_bias_quant(tim::vx::QuantType::ASYMMETRIC, 2.998e-05f, 0); tim::vx::TensorSpec fc3_bias_spec(tim::vx::DataType::INT32, fc3_bias_shape, tim::vx::TensorAttribute::CONSTANT, fc3_bias_quant); auto fc3_bias = graph->CreateTensor(fc3_bias_spec, &lenet_weights[425780]); tim::vx::Quantization fc3_output_quant(tim::vx::QuantType::ASYMMETRIC, 0.01992089f, 0); tim::vx::TensorSpec fc3_output_spec(tim::vx::DataType::UINT8, {}, tim::vx::TensorAttribute::TRANSIENT, fc3_output_quant); auto fc3_output = graph->CreateTensor(fc3_output_spec); tim::vx::Quantization relu_output_quant(tim::vx::QuantType::ASYMMETRIC, 0.01992089f, 0); tim::vx::TensorSpec relu_output_spec(tim::vx::DataType::UINT8, {}, tim::vx::TensorAttribute::TRANSIENT, relu_output_quant); auto relu_output = graph->CreateTensor(relu_output_spec); tim::vx::ShapeType fc4_weight_shape({500, 10}); tim::vx::Quantization fc4_weight_quant(tim::vx::QuantType::ASYMMETRIC, 0.00158043f, 135); tim::vx::TensorSpec fc4_weight_spec( tim::vx::DataType::UINT8, fc4_weight_shape, tim::vx::TensorAttribute::CONSTANT, fc4_weight_quant); auto fc4_weight = graph->CreateTensor(fc4_weight_spec, &lenet_weights[427780]); tim::vx::ShapeType fc4_bias_shape({10}); tim::vx::Quantization fc4_bias_quant(tim::vx::QuantType::ASYMMETRIC, 3.148e-05f, 0); tim::vx::TensorSpec fc4_bias_spec(tim::vx::DataType::INT32, fc4_bias_shape, tim::vx::TensorAttribute::CONSTANT, fc4_bias_quant); auto fc4_bias = graph->CreateTensor(fc4_bias_spec, &lenet_weights[432780]); tim::vx::Quantization fc4_output_quant(tim::vx::QuantType::ASYMMETRIC, 0.06251489f, 80); tim::vx::TensorSpec fc4_output_spec(tim::vx::DataType::UINT8, {}, tim::vx::TensorAttribute::TRANSIENT, fc4_output_quant); auto fc4_output = graph->CreateTensor(fc4_output_spec); tim::vx::ShapeType output_shape({10, 1}); tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, output_shape, tim::vx::TensorAttribute::OUTPUT); output = graph->CreateTensor(output_spec); auto conv1 = graph->CreateOperation( conv1_weight_shape[3], tim::vx::PadType::VALID, std::array({5, 5}), std::array({1, 1}), std::array({1, 1})); (*conv1) .BindInputs({input, conv1_weight, conv1_bias}) .BindOutputs({conv1_output}); auto pool1 = graph->CreateOperation( tim::vx::PoolType::MAX, tim::vx::PadType::NONE, std::array({2, 2}), std::array({2, 2})); (*pool1).BindInputs({conv1_output}).BindOutputs({pool1_output}); auto conv2 = graph->CreateOperation( conv2_weight_shape[3], tim::vx::PadType::VALID, std::array({5, 5}), std::array({1, 1}), std::array({1, 1})); (*conv2) .BindInputs({pool1_output, conv2_weight, conv2_bias}) .BindOutputs({conv2_output}); auto pool2 = graph->CreateOperation( tim::vx::PoolType::MAX, tim::vx::PadType::NONE, std::array({2, 2}), std::array({2, 2})); (*pool2).BindInputs({conv2_output}).BindOutputs({pool2_output}); auto fc3 = graph->CreateOperation( 2, fc3_weight_shape[1]); (*fc3) .BindInputs({pool2_output, fc3_weight, fc3_bias}) .BindOutputs({fc3_output}); auto relu = graph->CreateOperation(); (*relu).BindInput(fc3_output).BindOutput(relu_output); auto fc4 = graph->CreateOperation( 0, fc4_weight_shape[1]); (*fc4) .BindInputs({relu_output, fc4_weight, fc4_bias}) .BindOutputs({fc4_output}); auto softmax = graph->CreateOperation(1.0f, 0); (*softmax).BindInput(fc4_output).BindOutput(output); if (!graph->Compile()) { std::cout << "THREAD " << thread_id << ":Compile graph fail." << std::endl; return -1; } } // end lock { // start lock std::lock_guard lock(vsi_mutex); if (!input->CopyDataToTensor(input_data.data(), input_data.size())) { std::cout << "THREAD " << thread_id << ":Copy input data fail." << std::endl; return -1; } if (!graph->Run()) { std::cout << "THREAD " << thread_id << ":Run graph fail." << std::endl; return -1; } } // end lock output_data.resize(1 * 10); if (!output->CopyDataFromTensor(output_data.data())) { std::cout << "THREAD " << thread_id << ":Copy output data fail." << std::endl; return -1; } printTopN(output_data.data(), output_data.size(), 5); return 0; } int main(int argc, char** argv) { (void) argc; (void) argv; std::vector worker_threads; worker_threads.emplace_back(WorkerThread(1)); worker_threads.emplace_back(WorkerThread(2)); for (auto& t : worker_threads) t.join(); return 0; }