/**************************************************************************** * * Copyright (c) 2022 Vivante Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. * *****************************************************************************/ #include "tim/vx/context.h" #include "tim/vx/graph.h" #include "tim/vx/ops/gather_elements.h" #include #include "gtest/gtest.h" #include "test_utils.h" #ifdef _VSI_NN_OP_GATHER_ELEMENTS_H TEST(Gather_elements, shape_3_2_1_int32_axis_0) { auto ctx = tim::vx::Context::Create(); auto graph = ctx->CreateGraph(); tim::vx::ShapeType in_shape({3, 2, 1}); tim::vx::ShapeType indices_shape({2, 2, 1}); tim::vx::ShapeType out_shape({2, 2, 1}); tim::vx::TensorSpec input_spec(tim::vx::DataType::INT32, in_shape, tim::vx::TensorAttribute::INPUT); tim::vx::TensorSpec indices_spec(tim::vx::DataType::INT32, indices_shape, tim::vx::TensorAttribute::INPUT); tim::vx::TensorSpec output_spec(tim::vx::DataType::INT32, out_shape, tim::vx::TensorAttribute::OUTPUT); auto input_tensor = graph->CreateTensor(input_spec); auto indices_tensor = graph->CreateTensor(indices_spec); auto output_tensor = graph->CreateTensor(output_spec); std::vector in_data = { 1, 2, 3, 4, 5, 6, }; //The index value greater than rank-1 is regarded as rank-1 std::vector indices = { 1, 2, 0, 2, }; std::vector golden = { 2, 3, 4, 6, }; EXPECT_TRUE( input_tensor->CopyDataToTensor(in_data.data(), in_data.size() * 4)); EXPECT_TRUE( indices_tensor->CopyDataToTensor(indices.data(), indices.size() * 4)); auto op = graph->CreateOperation(0); (*op).BindInputs({input_tensor, indices_tensor}).BindOutputs({output_tensor}); EXPECT_TRUE(graph->Compile()); EXPECT_TRUE(graph->Run()); std::vector output(golden.size()); EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data())); EXPECT_EQ(golden, output); } TEST(Gather_elements, shape_3_2_1_int32_axis_1) { auto ctx = tim::vx::Context::Create(); auto graph = ctx->CreateGraph(); tim::vx::ShapeType in_shape({3, 2, 1}); tim::vx::ShapeType indices_shape({2, 2, 1}); tim::vx::ShapeType out_shape({2, 2, 1}); tim::vx::TensorSpec input_spec(tim::vx::DataType::INT32, in_shape, tim::vx::TensorAttribute::INPUT); tim::vx::TensorSpec indices_spec(tim::vx::DataType::INT32, indices_shape, tim::vx::TensorAttribute::INPUT); tim::vx::TensorSpec output_spec(tim::vx::DataType::INT32, out_shape, tim::vx::TensorAttribute::OUTPUT); auto input_tensor = graph->CreateTensor(input_spec); auto indices_tensor = graph->CreateTensor(indices_spec); auto output_tensor = graph->CreateTensor(output_spec); std::vector in_data = { 1, 2, 3, 4, 5, 6, }; //The index value greater than rank-1 is regarded as rank-1 std::vector indices = { 1, 2, 0, 2, }; std::vector golden = { 4, 5, 1, 5, }; EXPECT_TRUE( input_tensor->CopyDataToTensor(in_data.data(), in_data.size() * 4)); EXPECT_TRUE( indices_tensor->CopyDataToTensor(indices.data(), indices.size() * 4)); auto op = graph->CreateOperation(1); (*op).BindInputs({input_tensor, indices_tensor}).BindOutputs({output_tensor}); EXPECT_TRUE(graph->Compile()); EXPECT_TRUE(graph->Run()); std::vector output(golden.size()); EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data())); EXPECT_EQ(golden, output); } TEST(Gather_elements, shape_3_2_1_float32_axis_2) { auto ctx = tim::vx::Context::Create(); auto graph = ctx->CreateGraph(); tim::vx::ShapeType in_shape({3, 2, 1}); tim::vx::ShapeType indices_shape({2, 2, 1}); tim::vx::ShapeType out_shape({2, 2, 1}); tim::vx::TensorSpec input_spec(tim::vx::DataType::INT32, in_shape, tim::vx::TensorAttribute::INPUT); tim::vx::TensorSpec indices_spec(tim::vx::DataType::INT32, indices_shape, tim::vx::TensorAttribute::INPUT); tim::vx::TensorSpec output_spec(tim::vx::DataType::INT32, out_shape, tim::vx::TensorAttribute::OUTPUT); auto input_tensor = graph->CreateTensor(input_spec); auto indices_tensor = graph->CreateTensor(indices_spec); auto output_tensor = graph->CreateTensor(output_spec); std::vector in_data = { 1, 2, 3, 4, 5, 6, }; //The index value greater than rank-1 is regarded as rank-1 std::vector indices = { 1, 2, 0, 2, }; std::vector golden = { 1, 2, 3, 4, }; EXPECT_TRUE( input_tensor->CopyDataToTensor(in_data.data(), in_data.size() * 4)); EXPECT_TRUE( indices_tensor->CopyDataToTensor(indices.data(), indices.size() * 4)); auto op = graph->CreateOperation(2); (*op).BindInputs({input_tensor, indices_tensor}).BindOutputs({output_tensor}); EXPECT_TRUE(graph->Compile()); EXPECT_TRUE(graph->Run()); std::vector output(golden.size()); EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data())); EXPECT_EQ(golden, output); } #endif