/**************************************************************************** * * Copyright (c) 2021 Vivante Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. * *****************************************************************************/ #include "tim/vx/ops/mod.h" #include "tim/vx/context.h" #include "tim/vx/graph.h" #include "tim/vx/types.h" #include "test_utils.h" #include "gtest/gtest.h" #ifdef VSI_FEAT_OP_MOD TEST(Mod, shape_2_2_3_1_fp32_fmod_0) { auto ctx = tim::vx::Context::Create(); auto graph = ctx->CreateGraph(); tim::vx::ShapeType input_shape({3, 1}); tim::vx::ShapeType output_shape({3, 1}); tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, input_shape, tim::vx::TensorAttribute::INPUT); tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, output_shape, tim::vx::TensorAttribute::OUTPUT); auto input_tensor_x = graph->CreateTensor(input_spec); auto input_tensor_y = graph->CreateTensor(input_spec); auto output_tensor = graph->CreateTensor(output_spec); std::vector in_data_x = { 3, 8, 7 }; std::vector in_data_y = { 1, 3, 2 }; std::vector golden = { 0, 2, 1}; EXPECT_TRUE(input_tensor_x->CopyDataToTensor(in_data_x.data(), in_data_x.size()*4)); EXPECT_TRUE(input_tensor_y->CopyDataToTensor(in_data_y.data(), in_data_y.size()*4)); //fmod = 0 auto op = graph->CreateOperation(0); (*op).BindInputs({input_tensor_x, input_tensor_y}).BindOutputs({output_tensor}); EXPECT_TRUE(graph->Compile()); EXPECT_TRUE(graph->Run()); std::vector output(3); EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data())); EXPECT_EQ(golden, output); } TEST(Mod, shape_2_2_3_1_fp32_fmod_1) { auto ctx = tim::vx::Context::Create(); auto graph = ctx->CreateGraph(); tim::vx::ShapeType input_shape({3, 1}); tim::vx::ShapeType output_shape({3, 1}); tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, input_shape, tim::vx::TensorAttribute::INPUT); tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, output_shape, tim::vx::TensorAttribute::OUTPUT); auto input_tensor_x = graph->CreateTensor(input_spec); auto input_tensor_y = graph->CreateTensor(input_spec); auto output_tensor = graph->CreateTensor(output_spec); std::vector in_data_x = { 3.9, 10.0, 10.9 }; std::vector in_data_y = { 1.3, 4.4, 3.9 }; std::vector golden = { 0.0, 1.2, 3.1}; EXPECT_TRUE(input_tensor_x->CopyDataToTensor(in_data_x.data(), in_data_x.size()*4)); EXPECT_TRUE(input_tensor_y->CopyDataToTensor(in_data_y.data(), in_data_y.size()*4)); //fmod = 1 auto op = graph->CreateOperation(1); (*op).BindInputs({input_tensor_x, input_tensor_y}).BindOutputs({output_tensor}); EXPECT_TRUE(graph->Compile()); EXPECT_TRUE(graph->Run()); std::vector output(3); EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data())); EXPECT_TRUE(ArraysMatch(golden, output, 1e-5f)); } TEST(Mod, shape_2_2_3_1_fp32_Broadcast) { auto ctx = tim::vx::Context::Create(); auto graph = ctx->CreateGraph(); tim::vx::ShapeType input1_shape({3, 1}); tim::vx::ShapeType input2_shape({1, 1}); tim::vx::ShapeType output_shape({3, 1}); tim::vx::TensorSpec input1_spec(tim::vx::DataType::FLOAT32, input1_shape, tim::vx::TensorAttribute::INPUT); tim::vx::TensorSpec input2_spec(tim::vx::DataType::FLOAT32, input2_shape, tim::vx::TensorAttribute::INPUT); tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, output_shape, tim::vx::TensorAttribute::OUTPUT); auto input_tensor_x = graph->CreateTensor(input1_spec); auto input_tensor_y = graph->CreateTensor(input2_spec); auto output_tensor = graph->CreateTensor(output_spec); std::vector in_data_x = { 4, 11, 7}; std::vector in_data_y = { 3}; std::vector golden = { 1, 2, 1}; EXPECT_TRUE(input_tensor_x->CopyDataToTensor(in_data_x.data(), in_data_x.size()*4)); EXPECT_TRUE(input_tensor_y->CopyDataToTensor(in_data_y.data(), in_data_y.size()*4)); // fmod is set to be 0 default if not specified; auto op = graph->CreateOperation(); (*op).BindInputs({input_tensor_x, input_tensor_y}).BindOutputs({output_tensor}); EXPECT_TRUE(graph->Compile()); EXPECT_TRUE(graph->Run()); std::vector output(3); EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data())); EXPECT_EQ(golden, output); } #endif //(VSI_FEAT_OP_MOD)