/**************************************************************************** * * Copyright (c) 2020-2023 Vivante Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. * *****************************************************************************/ #include "tim/vx/context.h" #include "tim/vx/graph.h" #include "tim/vx/ops.h" #include "custom_gemm.h" #include void custom_gemm_single_test(){ auto ctx = tim::vx::Context::Create(); auto graph = ctx->CreateGraph(); tim::vx::ShapeType a_shape({6, 2}); tim::vx::ShapeType b_shape({2, 6}); tim::vx::ShapeType out_shape({2, 2}); tim::vx::TensorSpec a_spec(tim::vx::DataType::FLOAT32, a_shape, tim::vx::TensorAttribute::INPUT); tim::vx::TensorSpec b_spec(tim::vx::DataType::FLOAT32, b_shape, tim::vx::TensorAttribute::INPUT); tim::vx::TensorSpec out_spec(tim::vx::DataType::FLOAT32, out_shape, tim::vx::TensorAttribute::OUTPUT); auto a_tensor = graph->CreateTensor(a_spec); auto b_tensor = graph->CreateTensor(b_spec); auto out_tensor = graph->CreateTensor(out_spec); std::vector a_data = { 1, 2, 3, 4, 5, 6, -1, -2, -3, -4, -5, -6 }; std::vector b_data = { 6, 5, 4, 3, 2, 1, -6, -5, -4, -3, -2, -1 }; std::vector golden = { -36, -27, 36, 27 }; a_tensor->CopyDataToTensor(a_data.data(), a_data.size() * sizeof(float)); b_tensor->CopyDataToTensor(b_data.data(), b_data.size() * sizeof(float)); tim::vx::ops::CustomGemm::ParamTuple tuple_list(2,6,6,0,0,1.0,0,1.0,0,1.0,0); auto op = graph->CreateOperation( false,false,tuple_list); (*op).BindInputs({a_tensor, b_tensor}).BindOutputs({out_tensor}); graph->Compile(); graph->Run(); std::vector output(golden.size()); out_tensor->CopyDataFromTensor(output.data()); std::cout<<"the diff between golan and result:"<CreateGraph(); tim::vx::ShapeType a_shape({6, 2}); tim::vx::ShapeType b_shape({6, 2}); tim::vx::ShapeType c_shape({6, 2}); tim::vx::ShapeType d_shape({2, 6}); tim::vx::ShapeType out_shape({2, 2}); tim::vx::TensorSpec a_spec(tim::vx::DataType::FLOAT32, a_shape, tim::vx::TensorAttribute::INPUT); tim::vx::TensorSpec b_spec(tim::vx::DataType::FLOAT32, b_shape, tim::vx::TensorAttribute::INPUT); tim::vx::TensorSpec c_spec(tim::vx::DataType::FLOAT32, c_shape, tim::vx::TensorAttribute::TRANSIENT); tim::vx::TensorSpec d_spec(tim::vx::DataType::FLOAT32, d_shape, tim::vx::TensorAttribute::INPUT); tim::vx::TensorSpec out_spec(tim::vx::DataType::FLOAT32, out_shape, tim::vx::TensorAttribute::OUTPUT); auto a_tensor = graph->CreateTensor(a_spec); auto b_tensor = graph->CreateTensor(b_spec); auto c_tensor = graph->CreateTensor(c_spec); auto d_tensor = graph->CreateTensor(d_spec); auto out_tensor = graph->CreateTensor(out_spec); std::vector a_data = { 0, 1, 2, 3, 4, 5, -1, -2, -3, -4, -5, -6 }; std::vector b_data = { 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0 }; std::vector d_data = { 6, 5, 4, 3, 2, 1, -6, -5, -4, -3, -2, -1 }; std::vector golden = { -36, -27, 36, 27 }; a_tensor->CopyDataToTensor(a_data.data(), a_data.size() * sizeof(float)); b_tensor->CopyDataToTensor(b_data.data(), b_data.size() * sizeof(float)); d_tensor->CopyDataToTensor(d_data.data(), d_data.size() * sizeof(float)); auto op_add = graph->CreateOperation(2); (*op_add).BindInputs({a_tensor, b_tensor}).BindOutputs({c_tensor}); tim::vx::ops::CustomGemm::ParamTuple tuple_list(2,6,6,0,0,1.0,0,1.0,0,1.0,0); auto op_gemm = graph->CreateOperation( false,false,tuple_list); (*op_gemm).BindInputs({c_tensor, d_tensor}).BindOutputs({out_tensor}); graph->Compile(); graph->Run(); std::vector output(golden.size()); out_tensor->CopyDataFromTensor(output.data()); std::cout<<"the diff between golan and result:"<CreateGraph(); tim::vx::ShapeType a_shape({2, 2}); tim::vx::ShapeType b_shape({2, 2}); tim::vx::ShapeType c_shape({2, 2}); tim::vx::ShapeType d_shape({2, 2}); tim::vx::ShapeType out_shape({2, 2}); tim::vx::TensorSpec a_spec(tim::vx::DataType::FLOAT32, a_shape, tim::vx::TensorAttribute::INPUT); tim::vx::TensorSpec b_spec(tim::vx::DataType::FLOAT32, b_shape, tim::vx::TensorAttribute::INPUT); tim::vx::TensorSpec c_spec(tim::vx::DataType::FLOAT32, c_shape, tim::vx::TensorAttribute::TRANSIENT); tim::vx::TensorSpec d_spec(tim::vx::DataType::FLOAT32, d_shape, tim::vx::TensorAttribute::INPUT); tim::vx::TensorSpec out_spec(tim::vx::DataType::FLOAT32, out_shape, tim::vx::TensorAttribute::OUTPUT); auto a_tensor = graph->CreateTensor(a_spec); auto b_tensor = graph->CreateTensor(b_spec); auto c_tensor = graph->CreateTensor(c_spec); auto d_tensor = graph->CreateTensor(d_spec); auto out_tensor = graph->CreateTensor(out_spec); std::vector a_data = { 1, 1, 1,1 }; std::vector b_data = { 1, 1, 1, 1 }; std::vector d_data = { 1,1,1,1 }; std::vector golden = { 4,4,4,4 }; a_tensor->CopyDataToTensor(a_data.data(), a_data.size() * sizeof(float)); b_tensor->CopyDataToTensor(b_data.data(), b_data.size() * sizeof(float)); d_tensor->CopyDataToTensor(d_data.data(), d_data.size() * sizeof(float)); tim::vx::ops::CustomGemm::ParamTuple tuple_list(2,2,2,0,0,1.0,0,1.0,0,1.0,0); auto op_gemm = graph->CreateOperation( false,false,tuple_list); (*op_gemm).BindInputs({a_tensor, b_tensor}).BindOutputs({c_tensor}); auto op_gemm2 = graph->CreateOperation( false,false,tuple_list); (*op_gemm2).BindInputs({c_tensor, d_tensor}).BindOutputs({out_tensor}); graph->Compile(); graph->Run(); std::vector output(golden.size()); out_tensor->CopyDataFromTensor(output.data()); std::cout<<"the diff between golan and result:"<