/**************************************************************************** * * Copyright (c) 2020 Vivante Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. * *****************************************************************************/ #ifndef TIM_LAYOUT_INFER_ACTIVATION_LAYOUT_INFERENCE_H_ #define TIM_LAYOUT_INFER_ACTIVATION_LAYOUT_INFERENCE_H_ #include "tim/vx/ops/activations.h" #include "ops/op_layout_inference.h" #include "permute_vector.h" #include "direct_map_op_impl.h" namespace tim { namespace transform { template class ActivationLayoutInfer : public OpLayoutInfer { public: ActivationLayoutInfer( const std::shared_ptr op, std::shared_ptr& context) : OpLayoutInfer(op, context) {} void OnInputs( std::vector>& next_tensors) override { // Transmit input pv to out pv directly for activation ops assert(op_->impl()->InputsTensor().size() == 1); auto i_src = op_->impl()->InputsTensor()[0]; auto input_pv = context_->GetPermuteVector(i_src); auto activation = context_->infer_graph_->CreateOperation(); auto out_infer = CreateOutputsTensor(input_pv); (*activation) .BindInput(context_->GetMapedTensor(i_src)) .BindOutput(out_infer[0]); context_->SetPermuteVector(op_->impl()->OutputsTensor()[0], input_pv); next_tensors.push_back(op_->impl()->OutputsTensor()[0]); } }; class LeakyReluLayoutInfer : public OpLayoutInfer { public: LeakyReluLayoutInfer( const std::shared_ptr op, std::shared_ptr& context) : OpLayoutInfer(op, context) {} void OnInputs( std::vector>& next_tensors) override { assert(op_->impl()->InputsTensor().size() == 1); auto i_src = op_->impl()->InputsTensor()[0]; auto input_pv = context_->GetPermuteVector(i_src); auto leaky_relu = context_->infer_graph_->CreateOperation( op_->impl()->node()->nn_param.activation.leaky_ratio); auto out_infer = CreateOutputsTensor(input_pv); (*leaky_relu) .BindInput(context_->GetMapedTensor(i_src)) .BindOutput(out_infer[0]); context_->SetPermuteVector(op_->impl()->OutputsTensor()[0], input_pv); next_tensors.push_back(op_->impl()->OutputsTensor()[0]); } }; class PReluLayoutInfer : public OpLayoutInfer { public: PReluLayoutInfer( const std::shared_ptr op, std::shared_ptr& context) : OpLayoutInfer(op, context) {} void OnInputs( std::vector>& next_tensors) override { ReverseInputsPermuteVector(); auto src_input = op_->impl()->InputsTensor()[0]; auto input_pv = context_->GetPermuteVector(src_input); auto prelu = context_->infer_graph_->CreateOperation( op_->impl()->node()->nn_param.prelu.axis); auto out_infer = CreateOutputsTensor(input_pv); for (const auto& i_src : op_->impl()->InputsTensor()) { (*prelu).BindInput(context_->GetMapedTensor(i_src)); } (*prelu).BindOutput(out_infer[0]); context_->SetPermuteVector(op_->impl()->OutputsTensor()[0], input_pv); next_tensors.push_back(op_->impl()->OutputsTensor()[0]); } }; using ReluLayoutInfer = ActivationLayoutInfer; using Relu1LayoutInfer = ActivationLayoutInfer; using Relu6LayoutInfer = ActivationLayoutInfer; using EluLayoutInfer = ActivationLayoutInfer; using SigmoidLayoutInfer = ActivationLayoutInfer; using MishLayoutInfer = ActivationLayoutInfer; using HardSigmoidLayoutInfer = ActivationLayoutInfer; using SoftReluLayoutInfer = ActivationLayoutInfer; using HardSwishLayoutInfer = ActivationLayoutInfer; using TanhLayoutInfer = ActivationLayoutInfer; } // namespace transform } // namespace tim #endif