309 lines
13 KiB
C++
309 lines
13 KiB
C++
/****************************************************************************
|
|
*
|
|
* Copyright (c) 2020-2023 Vivante Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
* DEALINGS IN THE SOFTWARE.
|
|
*
|
|
*****************************************************************************/
|
|
#include "tim/vx/ops/bidirectional_sequence_lstm.h"
|
|
#include "tim/vx/ops/unidirectional_sequence_lstm.h"
|
|
#include "tim/vx/ops/reverse.h"
|
|
#include "vsi_nn_pub.h"
|
|
#include "op_impl.h"
|
|
|
|
#include <array>
|
|
namespace tim {
|
|
namespace vx {
|
|
namespace ops {
|
|
|
|
class BidirectionalSequenceLstmImpl : public OpImpl {
|
|
public:
|
|
enum {
|
|
BI_LSTM_INPUT_INPUT = 0,
|
|
|
|
BI_LSTM_FW_INPUT_WEIGHT_I2I = 1,
|
|
BI_LSTM_FW_INPUT_WEIGHT_I2F = 2,
|
|
BI_LSTM_FW_INPUT_WEIGHT_I2C = 3,
|
|
BI_LSTM_FW_INPUT_WEIGHT_I2O = 4,
|
|
|
|
BI_LSTM_FW_INPUT_WEIGHT_R2I = 5,
|
|
BI_LSTM_FW_INPUT_WEIGHT_R2F = 6,
|
|
BI_LSTM_FW_INPUT_WEIGHT_R2C = 7,
|
|
BI_LSTM_FW_INPUT_WEIGHT_R2O = 8,
|
|
|
|
BI_LSTM_FW_INPUT_WEIGHT_C2I = 9,
|
|
BI_LSTM_FW_INPUT_WEIGHT_C2F = 10,
|
|
BI_LSTM_FW_INPUT_WEIGHT_C2O = 11,
|
|
|
|
BI_LSTM_FW_INPUT_BIAS_I = 12,
|
|
BI_LSTM_FW_INPUT_BIAS_F = 13,
|
|
BI_LSTM_FW_INPUT_BIAS_C = 14,
|
|
BI_LSTM_FW_INPUT_BIAS_O = 15,
|
|
|
|
BI_LSTM_FW_INPUT_WEIGHT_PROJ = 16,
|
|
BI_LSTM_FW_INPUT_BIAS_PROJ = 17,
|
|
|
|
BI_LSTM_BW_INPUT_WEIGHT_I2I = 18,
|
|
BI_LSTM_BW_INPUT_WEIGHT_I2F = 19,
|
|
BI_LSTM_BW_INPUT_WEIGHT_I2C = 20,
|
|
BI_LSTM_BW_INPUT_WEIGHT_I2O = 21,
|
|
|
|
BI_LSTM_BW_INPUT_WEIGHT_R2I = 22,
|
|
BI_LSTM_BW_INPUT_WEIGHT_R2F = 23,
|
|
BI_LSTM_BW_INPUT_WEIGHT_R2C = 24,
|
|
BI_LSTM_BW_INPUT_WEIGHT_R2O = 25,
|
|
|
|
BI_LSTM_BW_INPUT_WEIGHT_C2I = 26,
|
|
BI_LSTM_BW_INPUT_WEIGHT_C2F = 27,
|
|
BI_LSTM_BW_INPUT_WEIGHT_C2O = 28,
|
|
|
|
BI_LSTM_BW_INPUT_BIAS_I = 29,
|
|
BI_LSTM_BW_INPUT_BIAS_F = 30,
|
|
BI_LSTM_BW_INPUT_BIAS_C = 31,
|
|
BI_LSTM_BW_INPUT_BIAS_O = 32,
|
|
|
|
BI_LSTM_BW_INPUT_WEIGHT_PROJ = 33,
|
|
BI_LSTM_BW_INPUT_BIAS_PROJ = 34,
|
|
|
|
BI_LSTM_FW_INPUT_H_STATE = 35,
|
|
BI_LSTM_FW_INPUT_C_STATE = 36,
|
|
|
|
BI_LSTM_BW_INPUT_H_STATE = 37,
|
|
BI_LSTM_BW_INPUT_C_STATE = 38,
|
|
|
|
BI_LSTM_AUX_INPUT = 39,
|
|
|
|
BI_LSTM_FW_AUX_INPUT_WEIGHT_I2I = 40,
|
|
BI_LSTM_FW_AUX_INPUT_WEIGHT_I2F = 41,
|
|
BI_LSTM_FW_AUX_INPUT_WEIGHT_I2C = 42,
|
|
BI_LSTM_FW_AUX_INPUT_WEIGHT_I2O = 43,
|
|
|
|
BI_LSTM_BW_AUX_INPUT_WEIGHT_I2I = 44,
|
|
BI_LSTM_BW_AUX_INPUT_WEIGHT_I2F = 45,
|
|
BI_LSTM_BW_AUX_INPUT_WEIGHT_I2C = 46,
|
|
BI_LSTM_BW_AUX_INPUT_WEIGHT_I2O = 47,
|
|
|
|
BI_LSTM_FW_INPUT_LAYERNORM_I = 48,
|
|
BI_LSTM_FW_INPUT_LAYERNORM_F = 49,
|
|
BI_LSTM_FW_INPUT_LAYERNORM_C = 50,
|
|
BI_LSTM_FW_INPUT_LAYERNORM_O = 51,
|
|
|
|
BI_LSTM_BW_INPUT_LAYERNORM_I = 52,
|
|
BI_LSTM_BW_INPUT_LAYERNORM_F = 53,
|
|
BI_LSTM_BW_INPUT_LAYERNORM_C = 54,
|
|
BI_LSTM_BW_INPUT_LAYERNORM_O = 55,
|
|
|
|
INPUT_CNT,
|
|
|
|
BI_LSTM_FW_OUTPUT_OUTPUT = 0,
|
|
BI_LSTM_FW_OUTPUT_H_STATE = 1,
|
|
BI_LSTM_FW_OUTPUT_C_STATE = 2,
|
|
|
|
BI_LSTM_BW_OUTPUT_OUTPUT = 3,
|
|
BI_LSTM_BW_OUTPUT_H_STATE = 4,
|
|
BI_LSTM_BW_OUTPUT_C_STATE = 5,
|
|
|
|
OUTPUT_CNT
|
|
};
|
|
|
|
BidirectionalSequenceLstmImpl(Graph* graph, int input_cnt, int output_cnt,
|
|
float cell_clip, float proj_clip,
|
|
tim::vx::ops::UnidirectionalSequenceLstm::ActivationType act_type,
|
|
float forget_bias, bool time_major,
|
|
tim::vx::ops::UnidirectionalSequenceLstm::ActivationType recurrent_act_type,
|
|
bool return_sequences, DataLayout layout = DataLayout::ANY)
|
|
: OpImpl(graph, -1, input_cnt, output_cnt, layout) {
|
|
lstm_forward_ = graph->CreateOperation<UnidirectionalSequenceLstm>(
|
|
cell_clip, proj_clip, act_type, forget_bias, time_major,
|
|
recurrent_act_type, return_sequences);
|
|
lstm_backward_ = graph->CreateOperation<UnidirectionalSequenceLstm>(
|
|
cell_clip, proj_clip, act_type, forget_bias, time_major,
|
|
recurrent_act_type, return_sequences);
|
|
reverse_input_ = graph->CreateOperation<Reverse>(time_major ? std::vector<int32_t> ({2}) :
|
|
std::vector<int32_t> ({1}));
|
|
reverse_output_ = graph->CreateOperation<Reverse>(time_major ? std::vector<int32_t> ({2}) :
|
|
std::vector<int32_t> ({1}));
|
|
}
|
|
|
|
~BidirectionalSequenceLstmImpl() {}
|
|
|
|
BidirectionalSequenceLstmImpl& BindInput(
|
|
const std::shared_ptr<Tensor>& tensor) override {
|
|
in_tensors_[input_tensor_index] = tensor;
|
|
|
|
if (this->input_tensor_index == INPUT_CNT - 1) {
|
|
// Get all input tensor
|
|
lstm_forward_->BindInput(in_tensors_[BI_LSTM_INPUT_INPUT]);
|
|
reverse_input_->BindInput(in_tensors_[BI_LSTM_INPUT_INPUT]);
|
|
TensorSpec bw_input_spec (in_tensors_[BI_LSTM_INPUT_INPUT]->GetSpec());
|
|
bw_input_tensor_ = graph_->CreateTensor(bw_input_spec.AsTransientSpec());
|
|
reverse_input_->BindOutput(bw_input_tensor_);
|
|
lstm_forward_->BindInput(in_tensors_[BI_LSTM_FW_INPUT_H_STATE]);
|
|
lstm_forward_->BindInput(in_tensors_[BI_LSTM_FW_INPUT_C_STATE]);
|
|
|
|
lstm_forward_->BindInput(in_tensors_[BI_LSTM_FW_INPUT_WEIGHT_I2I]);
|
|
lstm_forward_->BindInput(in_tensors_[BI_LSTM_FW_INPUT_WEIGHT_I2F]);
|
|
lstm_forward_->BindInput(in_tensors_[BI_LSTM_FW_INPUT_WEIGHT_I2C]);
|
|
lstm_forward_->BindInput(in_tensors_[BI_LSTM_FW_INPUT_WEIGHT_I2O]);
|
|
|
|
lstm_forward_->BindInput(in_tensors_[BI_LSTM_FW_INPUT_WEIGHT_R2I]);
|
|
lstm_forward_->BindInput(in_tensors_[BI_LSTM_FW_INPUT_WEIGHT_R2F]);
|
|
lstm_forward_->BindInput(in_tensors_[BI_LSTM_FW_INPUT_WEIGHT_R2C]);
|
|
lstm_forward_->BindInput(in_tensors_[BI_LSTM_FW_INPUT_WEIGHT_R2O]);
|
|
|
|
lstm_forward_->BindInput(in_tensors_[BI_LSTM_FW_INPUT_WEIGHT_C2I]);
|
|
lstm_forward_->BindInput(in_tensors_[BI_LSTM_FW_INPUT_WEIGHT_C2F]);
|
|
lstm_forward_->BindInput(in_tensors_[BI_LSTM_FW_INPUT_WEIGHT_C2O]);
|
|
|
|
lstm_forward_->BindInput(in_tensors_[BI_LSTM_FW_INPUT_BIAS_I]);
|
|
lstm_forward_->BindInput(in_tensors_[BI_LSTM_FW_INPUT_BIAS_F]);
|
|
lstm_forward_->BindInput(in_tensors_[BI_LSTM_FW_INPUT_BIAS_C]);
|
|
lstm_forward_->BindInput(in_tensors_[BI_LSTM_FW_INPUT_BIAS_O]);
|
|
|
|
lstm_forward_->BindInput(in_tensors_[BI_LSTM_FW_INPUT_WEIGHT_PROJ]);
|
|
lstm_forward_->BindInput(in_tensors_[BI_LSTM_FW_INPUT_BIAS_PROJ]);
|
|
|
|
lstm_forward_->BindInput(in_tensors_[BI_LSTM_FW_INPUT_LAYERNORM_I]);
|
|
lstm_forward_->BindInput(in_tensors_[BI_LSTM_FW_INPUT_LAYERNORM_F]);
|
|
lstm_forward_->BindInput(in_tensors_[BI_LSTM_FW_INPUT_LAYERNORM_C]);
|
|
lstm_forward_->BindInput(in_tensors_[BI_LSTM_FW_INPUT_LAYERNORM_O]);
|
|
|
|
lstm_backward_->BindInput(bw_input_tensor_);
|
|
lstm_backward_->BindInput(in_tensors_[BI_LSTM_BW_INPUT_H_STATE]);
|
|
lstm_backward_->BindInput(in_tensors_[BI_LSTM_BW_INPUT_C_STATE]);
|
|
|
|
lstm_backward_->BindInput(in_tensors_[BI_LSTM_BW_INPUT_WEIGHT_I2I]);
|
|
lstm_backward_->BindInput(in_tensors_[BI_LSTM_BW_INPUT_WEIGHT_I2F]);
|
|
lstm_backward_->BindInput(in_tensors_[BI_LSTM_BW_INPUT_WEIGHT_I2C]);
|
|
lstm_backward_->BindInput(in_tensors_[BI_LSTM_BW_INPUT_WEIGHT_I2O]);
|
|
|
|
lstm_backward_->BindInput(in_tensors_[BI_LSTM_BW_INPUT_WEIGHT_R2I]);
|
|
lstm_backward_->BindInput(in_tensors_[BI_LSTM_BW_INPUT_WEIGHT_R2F]);
|
|
lstm_backward_->BindInput(in_tensors_[BI_LSTM_BW_INPUT_WEIGHT_R2C]);
|
|
lstm_backward_->BindInput(in_tensors_[BI_LSTM_BW_INPUT_WEIGHT_R2O]);
|
|
|
|
lstm_backward_->BindInput(in_tensors_[BI_LSTM_BW_INPUT_WEIGHT_C2I]);
|
|
lstm_backward_->BindInput(in_tensors_[BI_LSTM_BW_INPUT_WEIGHT_C2F]);
|
|
lstm_backward_->BindInput(in_tensors_[BI_LSTM_BW_INPUT_WEIGHT_C2O]);
|
|
|
|
lstm_backward_->BindInput(in_tensors_[BI_LSTM_BW_INPUT_BIAS_I]);
|
|
lstm_backward_->BindInput(in_tensors_[BI_LSTM_BW_INPUT_BIAS_F]);
|
|
lstm_backward_->BindInput(in_tensors_[BI_LSTM_BW_INPUT_BIAS_C]);
|
|
lstm_backward_->BindInput(in_tensors_[BI_LSTM_BW_INPUT_BIAS_O]);
|
|
|
|
lstm_backward_->BindInput(in_tensors_[BI_LSTM_BW_INPUT_WEIGHT_PROJ]);
|
|
lstm_backward_->BindInput(in_tensors_[BI_LSTM_BW_INPUT_BIAS_PROJ]);
|
|
|
|
lstm_backward_->BindInput(in_tensors_[BI_LSTM_BW_INPUT_LAYERNORM_I]);
|
|
lstm_backward_->BindInput(in_tensors_[BI_LSTM_BW_INPUT_LAYERNORM_F]);
|
|
lstm_backward_->BindInput(in_tensors_[BI_LSTM_BW_INPUT_LAYERNORM_C]);
|
|
lstm_backward_->BindInput(in_tensors_[BI_LSTM_BW_INPUT_LAYERNORM_O]);
|
|
}
|
|
this->input_tensor_index++;
|
|
return *this;
|
|
}
|
|
|
|
BidirectionalSequenceLstmImpl& BindOutput(
|
|
const std::shared_ptr<Tensor>& tensor) override {
|
|
out_tensors_[output_tensor_index] = tensor;
|
|
|
|
if (this->output_tensor_index == OUTPUT_CNT - 1) {
|
|
lstm_forward_->BindOutput(out_tensors_[BI_LSTM_FW_OUTPUT_OUTPUT]);
|
|
lstm_forward_->BindOutput(out_tensors_[BI_LSTM_FW_OUTPUT_H_STATE]);
|
|
lstm_forward_->BindOutput(out_tensors_[BI_LSTM_FW_OUTPUT_C_STATE]);
|
|
|
|
bw_output_tensor_ = graph_->CreateTensor(out_tensors_[BI_LSTM_BW_OUTPUT_OUTPUT]->GetSpec());
|
|
lstm_backward_->BindOutput(bw_output_tensor_);
|
|
reverse_output_->BindInput(bw_output_tensor_);
|
|
reverse_output_->BindOutput(out_tensors_[BI_LSTM_BW_OUTPUT_OUTPUT]);
|
|
lstm_backward_->BindOutput(out_tensors_[BI_LSTM_BW_OUTPUT_H_STATE]);
|
|
lstm_backward_->BindOutput(out_tensors_[BI_LSTM_BW_OUTPUT_C_STATE]);
|
|
}
|
|
this->output_tensor_index++;
|
|
return *this;
|
|
}
|
|
|
|
vsi_nn_node_t* node() override { return nullptr; }
|
|
|
|
std::vector<std::shared_ptr<Tensor>> InputsTensor() override {
|
|
return inputs_tensor_;
|
|
}
|
|
std::vector<std::shared_ptr<Tensor>> OutputsTensor() override {
|
|
return outputs_tensor_;
|
|
}
|
|
|
|
private:
|
|
std::shared_ptr<tim::vx::Operation> lstm_forward_;
|
|
std::shared_ptr<tim::vx::Operation> lstm_backward_;
|
|
std::shared_ptr<tim::vx::Operation> reverse_input_;
|
|
std::shared_ptr<tim::vx::Operation> reverse_output_;
|
|
|
|
std::array<std::shared_ptr<tim::vx::Tensor>, INPUT_CNT> in_tensors_;
|
|
std::array<std::shared_ptr<tim::vx::Tensor>, OUTPUT_CNT> out_tensors_;
|
|
std::shared_ptr<Tensor> bw_input_tensor_;
|
|
std::shared_ptr<Tensor> bw_output_tensor_;
|
|
};
|
|
|
|
UnidirectionalSequenceLstm::ActivationType interpreter(BidirectionalSequenceLstm::ActivationType act){
|
|
switch (act){
|
|
|
|
case BidirectionalSequenceLstm::ActivationType::kRELU:
|
|
return UnidirectionalSequenceLstm::ActivationType::kRELU;
|
|
case BidirectionalSequenceLstm::ActivationType::kRELU6:
|
|
return UnidirectionalSequenceLstm::ActivationType::kRELU6;
|
|
case BidirectionalSequenceLstm::ActivationType::kTANH:
|
|
return UnidirectionalSequenceLstm::ActivationType::kTANH;
|
|
case BidirectionalSequenceLstm::ActivationType::kSIGMOID:
|
|
return UnidirectionalSequenceLstm::ActivationType::kSIGMOID;
|
|
case BidirectionalSequenceLstm::ActivationType::kHARDSIGMOID:
|
|
return UnidirectionalSequenceLstm::ActivationType::kHARDSIGMOID;
|
|
default: {
|
|
return UnidirectionalSequenceLstm::ActivationType::kNONE;
|
|
}
|
|
}
|
|
}
|
|
BidirectionalSequenceLstm::BidirectionalSequenceLstm(
|
|
Graph* graph, float cell_clip, float proj_clip, ActivationType act_type,
|
|
float forget_bias, bool time_major, ActivationType recurrent_act_type,
|
|
bool return_sequences)
|
|
: cell_clip_(cell_clip),
|
|
proj_clip_(proj_clip),
|
|
act_type_(act_type),
|
|
forget_bias_(forget_bias),
|
|
time_major_(time_major),
|
|
recurrent_act_type_(recurrent_act_type),
|
|
return_sequences_(return_sequences) {
|
|
impl_ = std::make_unique<BidirectionalSequenceLstmImpl>(graph, 0, 0, cell_clip_,
|
|
proj_clip_, interpreter(act_type_),
|
|
forget_bias_,time_major_,
|
|
interpreter(recurrent_act_type_),
|
|
return_sequences_, DataLayout::ANY);
|
|
}
|
|
|
|
std::shared_ptr<Operation> BidirectionalSequenceLstm::Clone(
|
|
std::shared_ptr<Graph>& graph) const {
|
|
return graph->CreateOperation<BidirectionalSequenceLstm>(
|
|
this->cell_clip_, this->proj_clip_, this->act_type_, this->forget_bias_,
|
|
this->time_major_, this->recurrent_act_type_, this->return_sequences_);
|
|
}
|
|
|
|
} // namespace ops
|
|
} // namespace vx
|
|
} // namespace tim
|