TIM-VX/src/tim/vx/ops/deconv.cc

91 lines
3.7 KiB
C++

/****************************************************************************
*
* Copyright (c) 2020-2023 Vivante Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
*****************************************************************************/
#include "tim/vx/ops/deconv.h"
#include <cassert>
#include "builtin_op_impl.h"
#include "type_utils.h"
#include "vsi_nn_pub.h"
namespace tim {
namespace vx {
namespace ops {
DeConv2d::DeConv2d(Graph* graph, int32_t oc_count, PadType pad_type,
const std::array<uint32_t, 2>& ksize,
const std::array<uint32_t, 2>& stride,
const std::array<uint32_t, 2>& output_padding,
DataLayout input_layout,
DataLayout kernel_layout)
: DeConv2d(graph, oc_count, pad_type, ksize, stride, output_padding,
{0, 0, 0, 0}, 1, input_layout, kernel_layout) {}
DeConv2d::DeConv2d(Graph* graph, int32_t oc_count, PadType pad_type,
const std::array<uint32_t, 2>& ksize,
const std::array<uint32_t, 2>& stride,
const std::array<uint32_t, 2>& output_padding,
const std::array<uint32_t, 4>& pad,
const uint32_t group,
DataLayout input_layout,
DataLayout kernel_layout)
: BuiltinOp(graph, VSI_NN_OP_DECONVOLUTION, 0, 0, input_layout),
oc_count_(oc_count),
pad_type_(pad_type),
ksize_(ksize),
stride_(stride),
output_padding_(output_padding),
pad_(pad),
group_(group),
kernel_layout_(kernel_layout) {
// TODO(Sven): only support depthwise usage
assert((group == 1U) || group == static_cast<uint32_t>(oc_count));
this->impl()->node()->nn_param.deconv.ksize[0] = ksize_[0];
this->impl()->node()->nn_param.deconv.ksize[1] = ksize_[1];
this->impl()->node()->nn_param.deconv.stride[0] = stride_[0];
this->impl()->node()->nn_param.deconv.stride[1] = stride_[1];
this->impl()->node()->nn_param.deconv.pad_type = TranslatePadType(pad_type_);
this->impl()->node()->nn_param.deconv.weights = oc_count_;
this->impl()->node()->nn_param.deconv.group = group_;
this->impl()->node()->nn_param.deconv.output_padding[0] = output_padding_[0];
this->impl()->node()->nn_param.deconv.output_padding[1] = output_padding_[1];
this->impl()->node()->nn_param.deconv.pad[0] = pad_[0];
this->impl()->node()->nn_param.deconv.pad[1] = pad_[1];
this->impl()->node()->nn_param.deconv.pad[2] = pad_[2];
this->impl()->node()->nn_param.deconv.pad[3] = pad_[3];
}
std::shared_ptr<Operation> DeConv2d::Clone(
std::shared_ptr<Graph>& graph) const {
return graph->CreateOperation<DeConv2d>(
this->oc_count_, this->pad_type_, this->ksize_, this->stride_,
this->output_padding_, this->pad_, this->group_, this->impl_->layout_,
this->kernel_layout_);
}
} // namespace ops
} // namespace vx
} // namespace tim