TIM-VX/src/tim/transform/ops/simple_ops_layout_inference.h

78 lines
3.5 KiB
C++

/****************************************************************************
*
* Copyright (c) 2020-2023 Vivante Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
*****************************************************************************/
#ifndef TIM_LAYOUT_INFER_SIMMPLE_OPS_LAYOUT_INFERENCE_H_
#define TIM_LAYOUT_INFER_SIMMPLE_OPS_LAYOUT_INFERENCE_H_
#include "tim/vx/ops/simple_operations.h"
#include "ops/op_layout_inference.h"
#include "permute_vector.h"
#include "builtin_op_impl.h"
namespace tim {
namespace transform {
template <typename OpType>
class SimpleOpsLayoutInfer : public OpLayoutInfer {
public:
SimpleOpsLayoutInfer(
const std::shared_ptr<vx::Operation> op,
std::shared_ptr<layout_inference_impl::LayoutInferContext>& context)
: OpLayoutInfer(op, context) {}
void OnInputs(
std::vector<std::shared_ptr<vx::Tensor>>& next_tensors) override {
// Transmit input pv to out pv directly for simple ops
assert(op_->impl()->InputsTensor().size() == 1);
auto i_src = op_->impl()->InputsTensor()[0];
auto input_pv = context_->GetPermuteVector(i_src);
auto out_infer = CreateOutputsTensor(input_pv);
auto simple_op = context_->infer_graph_->CreateOperation<OpType>();
(*simple_op)
.BindInput(context_->GetMappedTensor(i_src))
.BindOutput(out_infer[0]);
context_->SetPermuteVector(op_->impl()->OutputsTensor()[0], input_pv);
next_tensors.push_back(op_->impl()->OutputsTensor()[0]);
}
};
using DataConvertLayoutInfer = SimpleOpsLayoutInfer<vx::ops::DataConvert>;
using NegLayoutInfer = SimpleOpsLayoutInfer<vx::ops::Neg>;
using AbsLayoutInfer = SimpleOpsLayoutInfer<vx::ops::Abs>;
using SinLayoutInfer = SimpleOpsLayoutInfer<vx::ops::Sin>;
using CosLayoutInfer = SimpleOpsLayoutInfer<vx::ops::Cos>;
using TanLayoutInfer = SimpleOpsLayoutInfer<vx::ops::Tan>;
using ATanLayoutInfer = SimpleOpsLayoutInfer<vx::ops::ATan>;
using ATanhLayoutInfer = SimpleOpsLayoutInfer<vx::ops::ATanh>;
using ACoshLayoutInfer = SimpleOpsLayoutInfer<vx::ops::ACosh>;
using ExpLayoutInfer = SimpleOpsLayoutInfer<vx::ops::Exp>;
using LogLayoutInfer = SimpleOpsLayoutInfer<vx::ops::Log>;
using SqrtLayoutInfer = SimpleOpsLayoutInfer<vx::ops::Sqrt>;
using RsqrtLayoutInfer = SimpleOpsLayoutInfer<vx::ops::Rsqrt>;
using SquareLayoutInfer = SimpleOpsLayoutInfer<vx::ops::Square>;
using LogicalNotLayoutInfer = SimpleOpsLayoutInfer<vx::ops::LogicalNot>;
} // namespace transform
} // namespace tim
#endif