TIM-VX/src/tim/vx/ops/localresponsenormalization_...

103 lines
4.7 KiB
C++

/****************************************************************************
*
* Copyright (c) 2020-2023 Vivante Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
*****************************************************************************/
#include "tim/vx/context.h"
#include "tim/vx/graph.h"
#include "tim/vx/ops/localresponsenormalization.h"
#include "test_utils.h"
#include "gtest/gtest.h"
TEST(localresponsenormalization, axis_0_shape_6_1_1_1_float) {
auto ctx = tim::vx::Context::Create();
auto graph = ctx->CreateGraph();
tim::vx::ShapeType io_shape({6, 1, 1, 1});
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, io_shape,
tim::vx::TensorAttribute::INPUT);
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, io_shape,
tim::vx::TensorAttribute::OUTPUT);
auto input_tensor = graph->CreateTensor(input_spec);
auto output_tensor = graph->CreateTensor(output_spec);
std::vector<float> in_data = {-1.1, 0.6, 0.7, 1.2, -0.7, 0.1};
std::vector<float> golden = {-0.264926, 0.125109, 0.140112,
0.267261, -0.161788, 0.0244266};
EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(),
in_data.size() * sizeof(float)));
int radius = 2;
int size = radius * 2;
float alpha = 4.0, beta = 0.5, bias = 9.0;
auto op = graph->CreateOperation<tim::vx::ops::LocalResponseNormalization>(
size, alpha, beta, bias, 0);
(*op).BindInputs({input_tensor}).BindOutputs({output_tensor});
EXPECT_TRUE(graph->Compile());
EXPECT_TRUE(graph->Run());
std::vector<float> output(golden.size());
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
EXPECT_TRUE(ArraysMatch(golden, output, 1e-5f));
}
TEST(localresponsenormalization, axis_1_shape_2_6_float) {
auto ctx = tim::vx::Context::Create();
auto graph = ctx->CreateGraph();
tim::vx::ShapeType io_shape({2, 6});
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, io_shape,
tim::vx::TensorAttribute::INPUT);
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, io_shape,
tim::vx::TensorAttribute::OUTPUT);
auto input_tensor = graph->CreateTensor(input_spec);
auto output_tensor = graph->CreateTensor(output_spec);
std::vector<float> in_data = {-1.100000023841858f, -1.100000023841858f, 0.6000000238418579f,
0.6000000238418579f, 0.699999988079071f, 0.699999988079071f,
1.2000000476837158f, 1.2000000476837158f, -0.699999988079071f,
-0.699999988079071f, 0.10000000149011612f, 0.10000000149011612f};
std::vector<float> golden = {-0.26492568850517273f, -0.26492568850517273f, 0.12510864436626434f,
0.12510864436626434f, 0.14011213183403015f, 0.14011213183403015f,
0.267261266708374f, 0.267261266708374f, -0.16178755462169647f,
-0.16178755462169647f, 0.024426599964499474f, 0.024426599964499474f};
EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(),
in_data.size() * sizeof(float)));
int radius = 2;
int size = radius * 2;
float alpha = 4.0, beta = 0.5, bias = 9.0;
auto op = graph->CreateOperation<tim::vx::ops::LocalResponseNormalization>(
size, alpha, beta, bias, 1);
(*op).BindInputs({input_tensor}).BindOutputs({output_tensor});
EXPECT_TRUE(graph->Compile());
EXPECT_TRUE(graph->Run());
std::vector<float> output(golden.size());
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
EXPECT_TRUE(ArraysMatch(golden, output, 1e-5f));
}