TIM-VX/src/tim/transform/ops/deconv2d_layout_inference.h

141 lines
5.9 KiB
C++

/****************************************************************************
*
* Copyright (c) 2020 Vivante Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
*****************************************************************************/
#ifndef TIM_LAYOUT_INFER_DECONV2D_LAYOUT_INFERENCE_H_
#define TIM_LAYOUT_INFER_DECONV2D_LAYOUT_INFERENCE_H_
#include "ops/op_layout_inference.h"
#include "permute_vector.h"
#include "builtin_op_impl.h"
#include "tim/vx/ops/deconv.h"
namespace tim {
namespace transform {
class DeConv2dLayoutInfer : public OpLayoutInfer {
public:
DeConv2dLayoutInfer(
const std::shared_ptr<vx::Operation>& op,
std::shared_ptr<layout_inference_impl::LayoutInferContext>& context)
: OpLayoutInfer(op, context) {}
void OnInputs(
std::vector<std::shared_ptr<vx::Tensor>>& next_tensors) override {
vx::DataLayout layout = op_->impl()->layout_;
auto required_pv = MakeShared(4);
if (layout == vx::DataLayout::CWHN) {
required_pv = std::make_shared<PermuteVector<4>>(kCWHN2WHCN);
}
auto src_inputs = op_->impl()->InputsTensor();
for (const auto& in : src_inputs) {
std::shared_ptr<vx::Tensor> infer_tensor;
std::shared_ptr<IPermuteVector> trans_pv;
if (in->IsConstTensor() &&
!(in->GetSpec().attr_ & vx::TensorAttribute::INPUT)) {
// For bias
if (in->GetShape().size() == 1) {
infer_tensor = context_->infer_graph_->CreateTensor(in->GetSpec(),
in->GetDataRef());
trans_pv = MakeShared(1);
} else {
// For weight
if (!required_pv->IsAligned()) {
auto src_deconv2d =
std::static_pointer_cast<vx::ops::DeConv2d>(op_);
// Support TVM Kernel Layout
if (src_deconv2d->KernelDataLayout() == vx::DataLayout::OcIcWH) {
trans_pv = std::make_shared<PermuteVector<4>>(kOcIcWH2WHIcOc);
infer_tensor = PermuteConstTensor(in, trans_pv);
} else if (src_deconv2d->KernelDataLayout() ==
vx::DataLayout::WHIcOc) {
infer_tensor = context_->infer_graph_->CreateTensor(
in->GetSpec(), in->GetDataRef());
trans_pv = MakeShared(required_pv->Rank());
} else {
infer_tensor = PermuteConstTensor(in, required_pv);
trans_pv = required_pv;
}
} else {
infer_tensor = context_->infer_graph_->CreateTensor(
in->GetSpec(), in->GetDataRef());
trans_pv = MakeShared(required_pv->Rank());
}
}
} else {
// For bias
if (in->GetShape().size() == 1) {
infer_tensor = context_->GetMapedTensor(in);
trans_pv = MakeShared(1);
} else {
// For input/weight
auto pv = context_->GetPermuteVector(in);
auto final_pv = pv->Reverse()->Add(required_pv);
if (!final_pv->IsAligned()) {
infer_tensor =
InsertPermute(context_->GetMapedTensor(in), final_pv);
trans_pv = required_pv;
} else {
infer_tensor = context_->GetMapedTensor(in);
trans_pv = pv;
}
}
}
context_->UpdateTensorMap(in, infer_tensor);
context_->SetPermuteVector(in, trans_pv);
}
auto pad_type =
TranslatePadType(op_->impl()->node()->nn_param.deconv.pad_type);
std::array<uint32_t, 2> ksize = {
op_->impl()->node()->nn_param.deconv.ksize[0],
op_->impl()->node()->nn_param.deconv.ksize[1]};
std::array<uint32_t, 2> stride = {
op_->impl()->node()->nn_param.deconv.stride[0],
op_->impl()->node()->nn_param.deconv.stride[1]};
std::array<uint32_t, 2> output_padding = {
op_->impl()->node()->nn_param.deconv.output_padding[0],
op_->impl()->node()->nn_param.deconv.output_padding[0]};
std::array<uint32_t, 4> pad = {op_->impl()->node()->nn_param.deconv.pad[0],
op_->impl()->node()->nn_param.deconv.pad[1],
op_->impl()->node()->nn_param.deconv.pad[2],
op_->impl()->node()->nn_param.deconv.pad[3]};
int32_t oc_count = op_->impl()->node()->nn_param.deconv.weights;
const uint32_t group = op_->impl()->node()->nn_param.deconv.group;
auto deconv = context_->infer_graph_->CreateOperation<vx::ops::DeConv2d>(
oc_count, pad_type, ksize, stride, output_padding, pad, group);
auto infer_out = CreateOutputsTensor(required_pv);
for (const auto& i_src : src_inputs) {
(*deconv).BindInput(context_->GetMapedTensor(i_src));
}
(*deconv).BindOutput(infer_out[0]);
context_->SetPermuteVector(op_->impl()->OutputsTensor()[0], required_pv);
next_tensors.push_back(op_->impl()->OutputsTensor()[0]);
}
};
} // namespace transform
} // namespace tim
#endif