TIM-VX/samples/multi_thread_test/multi_thread_test.cc

375 lines
17 KiB
C++

/****************************************************************************
*
* Copyright (c) 2020-2023 Vivante Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
*****************************************************************************/
#include <algorithm>
#include <atomic>
#include <exception>
#include <iomanip>
#include <iostream>
#include <mutex>
#include <thread>
#include <tuple>
#include <vector>
#include "lenet_asymu8_weights.h"
#include "tim/vx/context.h"
#include "tim/vx/graph.h"
#include "tim/vx/operation.h"
#include "tim/vx/ops/activations.h"
#include "tim/vx/ops/conv2d.h"
#include "tim/vx/ops/fullyconnected.h"
#include "tim/vx/ops/pool2d.h"
#include "tim/vx/ops/softmax.h"
#include "tim/vx/tensor.h"
std::vector<uint8_t> input_data = {
0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 2, 0, 0, 8, 0,
3, 0, 7, 0, 2, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 3, 1, 1, 0, 14, 0, 0, 3, 0,
2, 4, 0, 0, 0, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 4, 3, 0, 0, 0, 5, 0, 4, 0, 0,
0, 0, 10, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 6, 5, 0, 2, 0, 9, 0, 12, 2, 0, 5, 1, 0,
0, 2, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
3, 0, 33, 0, 0, 155, 186, 55, 17, 22, 0, 0, 3, 9, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
2, 0, 167, 253, 255, 235, 255, 240, 134, 36, 0, 6, 1, 4, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 6, 87,
240, 251, 254, 254, 237, 255, 252, 191, 27, 0, 0, 5, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 19, 226, 255, 235,
255, 255, 254, 242, 255, 255, 68, 12, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 4, 1, 58, 254, 255, 158, 0, 2,
47, 173, 253, 247, 255, 65, 4, 1, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 162, 240, 248, 92, 8, 0, 13, 0,
88, 249, 244, 148, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 17, 64, 244, 255, 210, 0, 0, 1, 2, 0, 52, 223,
255, 223, 0, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 144, 245, 255, 142, 0, 4, 9, 0, 6, 0, 37, 222, 226,
42, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 73,
255, 243, 104, 0, 0, 0, 0, 11, 0, 0, 0, 235, 242, 101, 4,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 133, 245, 226,
12, 4, 15, 0, 0, 0, 0, 24, 0, 235, 246, 41, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 236, 245, 152, 0, 10,
0, 0, 0, 0, 6, 0, 28, 227, 239, 1, 6, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 227, 240, 53, 4, 0, 0, 24,
0, 1, 0, 8, 181, 249, 177, 0, 2, 0, 0, 0, 0, 4, 0,
6, 1, 5, 0, 0, 87, 246, 219, 14, 0, 0, 2, 0, 10, 7,
0, 134, 255, 249, 104, 4, 0, 0, 0, 0, 0, 8, 0, 3, 0,
0, 0, 4, 89, 255, 228, 0, 11, 0, 8, 14, 0, 0, 100, 250,
248, 236, 0, 0, 8, 0, 0, 0, 0, 5, 0, 2, 0, 0, 2,
6, 68, 250, 228, 6, 6, 0, 0, 1, 0, 140, 240, 253, 238, 51,
31, 0, 3, 0, 0, 0, 0, 0, 0, 5, 0, 0, 2, 0, 26,
215, 255, 119, 0, 21, 1, 40, 156, 233, 244, 239, 103, 0, 6, 6,
0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 225, 251,
240, 141, 118, 139, 222, 244, 255, 249, 112, 17, 0, 0, 8, 3, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 84, 245, 255, 247,
255, 249, 255, 255, 249, 132, 11, 0, 9, 3, 1, 1, 0, 0, 0,
0, 2, 0, 0, 1, 0, 0, 6, 1, 0, 166, 236, 255, 255, 248,
249, 248, 72, 0, 0, 16, 0, 16, 0, 4, 0, 0, 0, 0, 0,
0, 0, 6, 0, 0, 4, 0, 0, 20, 106, 126, 188, 190, 112, 28,
0, 21, 0, 1, 2, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0,
};
std::mutex vsi_mutex;
struct WorkerThread {
const uint64_t thread_id;
WorkerThread(const uint64_t id) : thread_id(id){};
void operator()() {
std::cout << "THREAD " << thread_id << ": Start process." << std::endl;
try {
int ret = 0;
ret = RunGraph(thread_id);
std::cout << "THREAD " << thread_id << ": RunGraph status " << ret
<< std::endl;
} catch (const std::exception& e) {
std::cout << "THREAD " << thread_id << " failed: " << e.what()
<< std::endl;
return;
}
}
private:
int RunGraph(uint64_t thread_id);
};
template <typename T>
static void printTopN(const T* prob, int outputCount, int topNum) {
std::vector<std::tuple<int, T>> data;
for (int i = 0; i < outputCount; i++) {
data.push_back(std::make_tuple(i, prob[i]));
}
std::sort(data.begin(), data.end(),
[](auto& a, auto& b) { return std::get<1>(a) > std::get<1>(b); });
std::cout << " --- Top" << topNum << " ---" << std::endl;
for (int i = 0; i < topNum; i++) {
std::cout << std::setw(3) << std::get<0>(data[i]) << ": " << std::fixed
<< std::setprecision(6) << std::get<1>(data[i]) << std::endl;
}
}
int WorkerThread::RunGraph(uint64_t thread_id) {
std::shared_ptr<tim::vx::Context> context = nullptr;
std::shared_ptr<tim::vx::Graph> graph = nullptr;
std::shared_ptr<tim::vx::Tensor> input;
std::shared_ptr<tim::vx::Tensor> output;
std::vector<float> output_data;
{
// start lock
std::lock_guard<std::mutex> lock(vsi_mutex);
context = tim::vx::Context::Create();
graph = context->CreateGraph();
std::cout << "THREAD " << thread_id << ": Creating graph" << std::endl;
tim::vx::ShapeType input_shape({28, 28, 1, 1});
tim::vx::Quantization input_quant(tim::vx::QuantType::ASYMMETRIC,
0.00390625f, 0);
tim::vx::TensorSpec input_spec(tim::vx::DataType::UINT8, input_shape,
tim::vx::TensorAttribute::INPUT,
input_quant);
input = graph->CreateTensor(input_spec);
tim::vx::ShapeType conv1_weight_shape({5, 5, 1, 20});
tim::vx::Quantization conv1_weighteight_quant(
tim::vx::QuantType::ASYMMETRIC, 0.00336234f, 119);
tim::vx::TensorSpec conv1_weighteight_spec(
tim::vx::DataType::UINT8, conv1_weight_shape,
tim::vx::TensorAttribute::CONSTANT, conv1_weighteight_quant);
auto conv1_weight =
graph->CreateTensor(conv1_weighteight_spec, &lenet_weights[0]);
tim::vx::ShapeType conv1_bias_shape({20});
tim::vx::Quantization conv1_bias_quant(tim::vx::QuantType::ASYMMETRIC,
1.313e-05f, 0);
tim::vx::TensorSpec conv1_bias_spec(
tim::vx::DataType::INT32, conv1_bias_shape,
tim::vx::TensorAttribute::CONSTANT, conv1_bias_quant);
auto conv1_bias = graph->CreateTensor(conv1_bias_spec, &lenet_weights[500]);
tim::vx::Quantization conv1_output_quant(tim::vx::QuantType::ASYMMETRIC,
0.01928069f, 140);
tim::vx::TensorSpec conv1_output_spec(tim::vx::DataType::UINT8, {},
tim::vx::TensorAttribute::TRANSIENT,
conv1_output_quant);
auto conv1_output = graph->CreateTensor(conv1_output_spec);
tim::vx::Quantization pool1_output_quant(tim::vx::QuantType::ASYMMETRIC,
0.01928069f, 140);
tim::vx::TensorSpec pool1_output_spec(tim::vx::DataType::UINT8, {},
tim::vx::TensorAttribute::TRANSIENT,
pool1_output_quant);
auto pool1_output = graph->CreateTensor(pool1_output_spec);
tim::vx::ShapeType conv2_weight_shape({5, 5, 20, 50});
tim::vx::Quantization conv2_weight_quant(tim::vx::QuantType::ASYMMETRIC,
0.0011482f, 128);
tim::vx::TensorSpec conv2_weight_spec(
tim::vx::DataType::UINT8, conv2_weight_shape,
tim::vx::TensorAttribute::CONSTANT, conv2_weight_quant);
auto conv2_weight =
graph->CreateTensor(conv2_weight_spec, &lenet_weights[580]);
tim::vx::ShapeType conv2_bias_shape({50});
tim::vx::Quantization conv2_bias_quant(tim::vx::QuantType::ASYMMETRIC,
2.214e-05f, 0);
tim::vx::TensorSpec conv2_bias_spec(
tim::vx::DataType::INT32, conv2_bias_shape,
tim::vx::TensorAttribute::CONSTANT, conv2_bias_quant);
auto conv2_bias =
graph->CreateTensor(conv2_bias_spec, &lenet_weights[25580]);
tim::vx::Quantization conv2_output_quant(tim::vx::QuantType::ASYMMETRIC,
0.04075872f, 141);
tim::vx::TensorSpec conv2_output_spec(tim::vx::DataType::UINT8, {},
tim::vx::TensorAttribute::TRANSIENT,
conv2_output_quant);
auto conv2_output = graph->CreateTensor(conv2_output_spec);
tim::vx::Quantization pool2_output_quant(tim::vx::QuantType::ASYMMETRIC,
0.04075872f, 141);
tim::vx::TensorSpec pool2_output_spec(tim::vx::DataType::UINT8, {},
tim::vx::TensorAttribute::TRANSIENT,
pool2_output_quant);
auto pool2_output = graph->CreateTensor(pool2_output_spec);
tim::vx::ShapeType fc3_weight_shape({800, 500});
tim::vx::Quantization fc3_weight_quant(tim::vx::QuantType::ASYMMETRIC,
0.00073548f, 130);
tim::vx::TensorSpec fc3_weight_spec(
tim::vx::DataType::UINT8, fc3_weight_shape,
tim::vx::TensorAttribute::CONSTANT, fc3_weight_quant);
auto fc3_weight =
graph->CreateTensor(fc3_weight_spec, &lenet_weights[25780]);
tim::vx::ShapeType fc3_bias_shape({500});
tim::vx::Quantization fc3_bias_quant(tim::vx::QuantType::ASYMMETRIC,
2.998e-05f, 0);
tim::vx::TensorSpec fc3_bias_spec(tim::vx::DataType::INT32, fc3_bias_shape,
tim::vx::TensorAttribute::CONSTANT,
fc3_bias_quant);
auto fc3_bias = graph->CreateTensor(fc3_bias_spec, &lenet_weights[425780]);
tim::vx::Quantization fc3_output_quant(tim::vx::QuantType::ASYMMETRIC,
0.01992089f, 0);
tim::vx::TensorSpec fc3_output_spec(tim::vx::DataType::UINT8, {},
tim::vx::TensorAttribute::TRANSIENT,
fc3_output_quant);
auto fc3_output = graph->CreateTensor(fc3_output_spec);
tim::vx::Quantization relu_output_quant(tim::vx::QuantType::ASYMMETRIC,
0.01992089f, 0);
tim::vx::TensorSpec relu_output_spec(tim::vx::DataType::UINT8, {},
tim::vx::TensorAttribute::TRANSIENT,
relu_output_quant);
auto relu_output = graph->CreateTensor(relu_output_spec);
tim::vx::ShapeType fc4_weight_shape({500, 10});
tim::vx::Quantization fc4_weight_quant(tim::vx::QuantType::ASYMMETRIC,
0.00158043f, 135);
tim::vx::TensorSpec fc4_weight_spec(
tim::vx::DataType::UINT8, fc4_weight_shape,
tim::vx::TensorAttribute::CONSTANT, fc4_weight_quant);
auto fc4_weight =
graph->CreateTensor(fc4_weight_spec, &lenet_weights[427780]);
tim::vx::ShapeType fc4_bias_shape({10});
tim::vx::Quantization fc4_bias_quant(tim::vx::QuantType::ASYMMETRIC,
3.148e-05f, 0);
tim::vx::TensorSpec fc4_bias_spec(tim::vx::DataType::INT32, fc4_bias_shape,
tim::vx::TensorAttribute::CONSTANT,
fc4_bias_quant);
auto fc4_bias = graph->CreateTensor(fc4_bias_spec, &lenet_weights[432780]);
tim::vx::Quantization fc4_output_quant(tim::vx::QuantType::ASYMMETRIC,
0.06251489f, 80);
tim::vx::TensorSpec fc4_output_spec(tim::vx::DataType::UINT8, {},
tim::vx::TensorAttribute::TRANSIENT,
fc4_output_quant);
auto fc4_output = graph->CreateTensor(fc4_output_spec);
tim::vx::ShapeType output_shape({10, 1});
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, output_shape,
tim::vx::TensorAttribute::OUTPUT);
output = graph->CreateTensor(output_spec);
auto conv1 = graph->CreateOperation<tim::vx::ops::Conv2d>(
conv1_weight_shape[3], tim::vx::PadType::VALID,
std::array<uint32_t, 2>({5, 5}), std::array<uint32_t, 2>({1, 1}),
std::array<uint32_t, 2>({1, 1}));
(*conv1)
.BindInputs({input, conv1_weight, conv1_bias})
.BindOutputs({conv1_output});
auto pool1 = graph->CreateOperation<tim::vx::ops::Pool2d>(
tim::vx::PoolType::MAX, tim::vx::PadType::NONE,
std::array<uint32_t, 2>({2, 2}), std::array<uint32_t, 2>({2, 2}));
(*pool1).BindInputs({conv1_output}).BindOutputs({pool1_output});
auto conv2 = graph->CreateOperation<tim::vx::ops::Conv2d>(
conv2_weight_shape[3], tim::vx::PadType::VALID,
std::array<uint32_t, 2>({5, 5}), std::array<uint32_t, 2>({1, 1}),
std::array<uint32_t, 2>({1, 1}));
(*conv2)
.BindInputs({pool1_output, conv2_weight, conv2_bias})
.BindOutputs({conv2_output});
auto pool2 = graph->CreateOperation<tim::vx::ops::Pool2d>(
tim::vx::PoolType::MAX, tim::vx::PadType::NONE,
std::array<uint32_t, 2>({2, 2}), std::array<uint32_t, 2>({2, 2}));
(*pool2).BindInputs({conv2_output}).BindOutputs({pool2_output});
auto fc3 = graph->CreateOperation<tim::vx::ops::FullyConnected>(
2, fc3_weight_shape[1]);
(*fc3)
.BindInputs({pool2_output, fc3_weight, fc3_bias})
.BindOutputs({fc3_output});
auto relu = graph->CreateOperation<tim::vx::ops::Relu>();
(*relu).BindInput(fc3_output).BindOutput(relu_output);
auto fc4 = graph->CreateOperation<tim::vx::ops::FullyConnected>(
0, fc4_weight_shape[1]);
(*fc4)
.BindInputs({relu_output, fc4_weight, fc4_bias})
.BindOutputs({fc4_output});
auto softmax = graph->CreateOperation<tim::vx::ops::Softmax>(1.0f, 0);
(*softmax).BindInput(fc4_output).BindOutput(output);
if (!graph->Compile()) {
std::cout << "THREAD " << thread_id << ":Compile graph fail."
<< std::endl;
return -1;
}
} // end lock
{
// start lock
std::lock_guard<std::mutex> lock(vsi_mutex);
if (!input->CopyDataToTensor(input_data.data(), input_data.size())) {
std::cout << "THREAD " << thread_id << ":Copy input data fail."
<< std::endl;
return -1;
}
if (!graph->Run()) {
std::cout << "THREAD " << thread_id << ":Run graph fail." << std::endl;
return -1;
}
} // end lock
output_data.resize(1 * 10);
if (!output->CopyDataFromTensor(output_data.data())) {
std::cout << "THREAD " << thread_id << ":Copy output data fail."
<< std::endl;
return -1;
}
printTopN(output_data.data(), output_data.size(), 5);
return 0;
}
int main(int argc, char** argv) {
(void) argc;
(void) argv;
std::vector<std::thread> worker_threads;
worker_threads.emplace_back(WorkerThread(1));
worker_threads.emplace_back(WorkerThread(2));
for (auto& t : worker_threads) t.join();
return 0;
}