TIM-VX/include/tim/vx/ops/deconv.h

93 lines
3.5 KiB
C++

/****************************************************************************
*
* Copyright (c) 2020-2023 Vivante Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
*****************************************************************************/
#ifndef TIM_VX_OPS_DECONV_H_
#define TIM_VX_OPS_DECONV_H_
#include <array>
#include "tim/vx/builtin_op.h"
namespace tim {
namespace vx {
namespace ops {
/**
* ## DeConv2d
*
* Performs the transpose of 2-D convolution operation.
*
* This operation is sometimes called "deconvolution" after Deconvolutional Networks,
* but is actually the transpose (gradient) of Conv2D rather than an actual deconvolution.
*
* - oc_count_ : the out channel count for weight tensor.
* - pad_type : SAME, VALID or AUTO.
* - ksize : the height and width for weight tensor.
* - padding : AUTO, VALID or SAME.
* - pad : pad value for each spatial axis.
* - stride : stride along each spatial axis.
* - output_padding : specifying the amount of padding along the height and width of
* the output tensor.
* - group : the feature count of each group.
* - input_layout : Layout for input, WHCN by default.
* - kernel_layout: Layout for kernel, WHIO by default.
*/
class DeConv2d : public BuiltinOp {
public:
DeConv2d(Graph* graph, int32_t oc_count_, PadType pad_type,
const std::array<uint32_t, 2>& ksize,
const std::array<uint32_t, 2>& stride,
const std::array<uint32_t, 2>& output_padding,
DataLayout input_layout = DataLayout::WHCN,
DataLayout kernel_layout = DataLayout::WHIcOc);
DeConv2d(Graph* graph, int32_t oc_count_, PadType pad_type,
const std::array<uint32_t, 2>& ksize,
const std::array<uint32_t, 2>& stride,
const std::array<uint32_t, 2>& output_padding,
const std::array<uint32_t, 4>& pad,
const uint32_t group = 1,
DataLayout input_layout = DataLayout::WHCN,
DataLayout kernel_layout = DataLayout::WHIcOc);
DataLayout KernelDataLayout() { return kernel_layout_; }
std::shared_ptr<Operation> Clone(std::shared_ptr<Graph>& graph) const override;
protected:
const uint32_t oc_count_;
const PadType pad_type_;
const std::array<uint32_t, 2> ksize_;
const std::array<uint32_t, 2> stride_;
const std::array<uint32_t, 2> output_padding_;
const std::array<uint32_t, 4> pad_;
const uint32_t group_;
const DataLayout kernel_layout_;
};
} // namespace ops
} // namespace vx
} // namespace tim
#endif /* TIM_VX_OPS_DECONV_H_ */