144 lines
6.0 KiB
C++
144 lines
6.0 KiB
C++
/****************************************************************************
|
|
*
|
|
* Copyright (c) 2020 Vivante Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
* DEALINGS IN THE SOFTWARE.
|
|
*
|
|
*****************************************************************************/
|
|
#ifndef TIM_LAYOUT_INFER_CONV2D_LAYOUT_INFERENCE_H_
|
|
#define TIM_LAYOUT_INFER_CONV2D_LAYOUT_INFERENCE_H_
|
|
|
|
#include "tim/vx/ops/conv2d.h"
|
|
|
|
#include "direct_map_op_impl.h"
|
|
#include "permute_vector.h"
|
|
#include "ops/op_layout_inference.h"
|
|
|
|
namespace tim {
|
|
namespace transform {
|
|
class Conv2dLayoutInfer : public OpLayoutInfer {
|
|
public:
|
|
Conv2dLayoutInfer(
|
|
const std::shared_ptr<vx::Operation> op,
|
|
std::shared_ptr<layout_inference_impl::LayoutInferContext>& context)
|
|
: OpLayoutInfer(op, context) {}
|
|
void OnInputs(
|
|
std::vector<std::shared_ptr<vx::Tensor>>& next_tensors) override {
|
|
vx::DataLayout layout = op_->impl()->layout_;
|
|
auto required_pv = MakeShared(4);
|
|
if (layout == vx::DataLayout::CWHN) {
|
|
required_pv = std::make_shared<PermuteVector<4>>(kCWHN2WHCN);
|
|
}
|
|
auto input_tensors = op_->impl()->InputsTensor();
|
|
|
|
for (const auto& in : input_tensors) {
|
|
std::shared_ptr<vx::Tensor> infer_tensor;
|
|
std::shared_ptr<IPermuteVector> trans_pv;
|
|
if (in->IsConstTensor() &&
|
|
!(in->GetSpec().attr_ & vx::TensorAttribute::INPUT)) {
|
|
// For bias
|
|
if (in->GetShape().size() == 1) {
|
|
infer_tensor = context_->infer_graph_->CreateTensor(
|
|
in->GetSpec(), in->GetDataRef());
|
|
trans_pv = MakeShared(1);
|
|
} else {
|
|
// For input/weight
|
|
if (!required_pv->IsAligned()) {
|
|
auto src_conv2d = std::static_pointer_cast<vx::ops::Conv2d>(op_);
|
|
// Support TVM Kernel Layout
|
|
if (src_conv2d->KernelDataLayout() == vx::DataLayout::OcIcWH) {
|
|
trans_pv = std::make_shared<PermuteVector<4>>(kOcIcWH2WHIcOc);
|
|
infer_tensor = PermuteConstTensor(
|
|
in, trans_pv);
|
|
} else if (src_conv2d->KernelDataLayout() == vx::DataLayout::IcOcWH) {
|
|
trans_pv = std::make_shared<PermuteVector<4>>(kIcOcWH2WHIcOc);
|
|
infer_tensor = PermuteConstTensor(
|
|
in, trans_pv);
|
|
} else {
|
|
infer_tensor = PermuteConstTensor(in, required_pv);
|
|
trans_pv = required_pv;
|
|
}
|
|
} else {
|
|
infer_tensor = context_->infer_graph_->CreateTensor(
|
|
in->GetSpec(), in->GetDataRef());
|
|
trans_pv = MakeShared(required_pv->Rank());
|
|
}
|
|
}
|
|
} else {
|
|
// For bias
|
|
if (in->GetShape().size() == 1) {
|
|
infer_tensor = context_->GetMapedTensor(in);
|
|
trans_pv = MakeShared(1);
|
|
} else {
|
|
// For input/weight
|
|
auto pv = context_->GetPermuteVector(in);
|
|
auto final_pv = pv->Reverse()->Add(required_pv);
|
|
if (!final_pv->IsAligned()) {
|
|
infer_tensor =
|
|
InsertPermute(context_->GetMapedTensor(in), final_pv);
|
|
trans_pv = required_pv;
|
|
} else {
|
|
infer_tensor = context_->GetMapedTensor(in);
|
|
trans_pv = pv;
|
|
}
|
|
}
|
|
}
|
|
context_->UpdateTensorMap(in, infer_tensor);
|
|
context_->SetPermuteVector(in, trans_pv);
|
|
}
|
|
|
|
auto pad_type = TranslatePadType(op_->impl()->node()->nn_param.conv2d.pad_type);
|
|
std::array<uint32_t, 2> ksize = {
|
|
op_->impl()->node()->nn_param.conv2d.ksize[0],
|
|
op_->impl()->node()->nn_param.conv2d.ksize[1]
|
|
};
|
|
std::array<uint32_t, 2> stride = {
|
|
op_->impl()->node()->nn_param.conv2d.stride[0],
|
|
op_->impl()->node()->nn_param.conv2d.stride[1]
|
|
};
|
|
std::array<uint32_t, 2> dilation = {
|
|
op_->impl()->node()->nn_param.conv2d.dilation[0],
|
|
op_->impl()->node()->nn_param.conv2d.dilation[1]
|
|
};
|
|
std::array<uint32_t, 4> pad = {
|
|
op_->impl()->node()->nn_param.conv2d.pad[0],
|
|
op_->impl()->node()->nn_param.conv2d.pad[1],
|
|
op_->impl()->node()->nn_param.conv2d.pad[2],
|
|
op_->impl()->node()->nn_param.conv2d.pad[3]
|
|
};
|
|
int32_t multiplier = op_->impl()->node()->nn_param.conv2d.multiplier;
|
|
int32_t out_channels = op_->impl()->node()->nn_param.conv2d.weights;
|
|
auto conv2d = context_->infer_graph_->CreateOperation<vx::ops::Conv2d>(
|
|
out_channels, pad_type, ksize, stride, dilation, pad, multiplier,
|
|
vx::DataLayout::WHCN, vx::DataLayout::WHIcOc);
|
|
auto otensor_infer = CreateOutputsTensor(required_pv);
|
|
for (const auto& i_src : input_tensors) {
|
|
(*conv2d).BindInput(context_->GetMapedTensor(i_src));
|
|
}
|
|
(*conv2d).BindOutput(otensor_infer[0]);
|
|
context_->SetPermuteVector(op_->impl()->OutputsTensor()[0], required_pv);
|
|
// Add out tensor of src_graph into next_tensor
|
|
next_tensors.push_back(op_->impl()->OutputsTensor()[0]);
|
|
}
|
|
};
|
|
|
|
} // namespace transform
|
|
} // namespace tim
|
|
|
|
#endif |