TIM-VX/src/tim/transform/ops/activation_layout_inference.h

121 lines
5.1 KiB
C++

/****************************************************************************
*
* Copyright (c) 2020 Vivante Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
*****************************************************************************/
#ifndef TIM_LAYOUT_INFER_ACTIVATION_LAYOUT_INFERENCE_H_
#define TIM_LAYOUT_INFER_ACTIVATION_LAYOUT_INFERENCE_H_
#include "tim/vx/ops/activations.h"
#include "ops/op_layout_inference.h"
#include "permute_vector.h"
#include "direct_map_op_impl.h"
namespace tim {
namespace transform {
template <typename OpType>
class ActivationLayoutInfer : public OpLayoutInfer {
public:
ActivationLayoutInfer(
const std::shared_ptr<vx::Operation> op,
std::shared_ptr<layout_inference_impl::LayoutInferContext>& context)
: OpLayoutInfer(op, context) {}
void OnInputs(
std::vector<std::shared_ptr<vx::Tensor>>& next_tensors) override {
// Transmit input pv to out pv directly for activation ops
assert(op_->impl()->InputsTensor().size() == 1);
auto i_src = op_->impl()->InputsTensor()[0];
auto input_pv = context_->GetPermuteVector(i_src);
auto activation = context_->infer_graph_->CreateOperation<OpType>();
auto out_infer = CreateOutputsTensor(input_pv);
(*activation)
.BindInput(context_->GetMapedTensor(i_src))
.BindOutput(out_infer[0]);
context_->SetPermuteVector(op_->impl()->OutputsTensor()[0], input_pv);
next_tensors.push_back(op_->impl()->OutputsTensor()[0]);
}
};
class LeakyReluLayoutInfer : public OpLayoutInfer {
public:
LeakyReluLayoutInfer(
const std::shared_ptr<vx::Operation> op,
std::shared_ptr<layout_inference_impl::LayoutInferContext>& context)
: OpLayoutInfer(op, context) {}
void OnInputs(
std::vector<std::shared_ptr<vx::Tensor>>& next_tensors) override {
assert(op_->impl()->InputsTensor().size() == 1);
auto i_src = op_->impl()->InputsTensor()[0];
auto input_pv = context_->GetPermuteVector(i_src);
auto leaky_relu =
context_->infer_graph_->CreateOperation<vx::ops::LeakyRelu>(
op_->impl()->node()->nn_param.activation.leaky_ratio);
auto out_infer = CreateOutputsTensor(input_pv);
(*leaky_relu)
.BindInput(context_->GetMapedTensor(i_src))
.BindOutput(out_infer[0]);
context_->SetPermuteVector(op_->impl()->OutputsTensor()[0], input_pv);
next_tensors.push_back(op_->impl()->OutputsTensor()[0]);
}
};
class PReluLayoutInfer : public OpLayoutInfer {
public:
PReluLayoutInfer(
const std::shared_ptr<vx::Operation> op,
std::shared_ptr<layout_inference_impl::LayoutInferContext>& context)
: OpLayoutInfer(op, context) {}
void OnInputs(
std::vector<std::shared_ptr<vx::Tensor>>& next_tensors) override {
ReverseInputsPermuteVector();
auto src_input = op_->impl()->InputsTensor()[0];
auto input_pv = context_->GetPermuteVector(src_input);
auto prelu = context_->infer_graph_->CreateOperation<vx::ops::Prelu>(
op_->impl()->node()->nn_param.prelu.axis);
auto out_infer = CreateOutputsTensor(input_pv);
for (const auto& i_src : op_->impl()->InputsTensor()) {
(*prelu).BindInput(context_->GetMapedTensor(i_src));
}
(*prelu).BindOutput(out_infer[0]);
context_->SetPermuteVector(op_->impl()->OutputsTensor()[0], input_pv);
next_tensors.push_back(op_->impl()->OutputsTensor()[0]);
}
};
using ReluLayoutInfer = ActivationLayoutInfer<vx::ops::Relu>;
using Relu1LayoutInfer = ActivationLayoutInfer<vx::ops::Relu1>;
using Relu6LayoutInfer = ActivationLayoutInfer<vx::ops::Relu6>;
using EluLayoutInfer = ActivationLayoutInfer<vx::ops::Elu>;
using SigmoidLayoutInfer = ActivationLayoutInfer<vx::ops::Sigmoid>;
using MishLayoutInfer = ActivationLayoutInfer<vx::ops::Mish>;
using HardSigmoidLayoutInfer = ActivationLayoutInfer<vx::ops::HardSigmoid>;
using SoftReluLayoutInfer = ActivationLayoutInfer<vx::ops::SoftRelu>;
using HardSwishLayoutInfer = ActivationLayoutInfer<vx::ops::HardSwish>;
using TanhLayoutInfer = ActivationLayoutInfer<vx::ops::Tanh>;
} // namespace transform
} // namespace tim
#endif