2023-12-21 19:52:19 +08:00
|
|
|
import plotly_express as px
|
|
|
|
import torch
|
|
|
|
import torch.nn.functional as F
|
|
|
|
import torchvision.transforms.functional as Vision
|
|
|
|
import cv2
|
2023-12-21 21:20:49 +08:00
|
|
|
import math
|
|
|
|
import numpy as np
|
2023-12-21 19:52:19 +08:00
|
|
|
|
|
|
|
|
2023-12-21 21:20:49 +08:00
|
|
|
def DumpTensorToImage(tensor, name, autoPad=True, scale=1.0, auto2d=True):
|
|
|
|
if len(tensor.shape) != 2 and len(tensor.shape) != 1:
|
2023-12-21 19:52:19 +08:00
|
|
|
raise ("Error input dims")
|
2023-12-21 21:20:49 +08:00
|
|
|
|
2023-12-21 19:52:19 +08:00
|
|
|
tensor = tensor.float()
|
|
|
|
maxv = torch.max(tensor)
|
|
|
|
minv = torch.min(tensor)
|
|
|
|
tensor = (((tensor - minv) / (maxv - minv)) * 256).byte().cpu()
|
|
|
|
img = tensor.numpy()
|
|
|
|
srp = img.shape
|
2023-12-21 21:20:49 +08:00
|
|
|
|
|
|
|
if auto2d and len(srp) == 1:
|
|
|
|
ceiled = math.ceil((srp[0]) ** 0.5)
|
|
|
|
img = cv2.copyMakeBorder(img, 0, ceiled * ceiled - srp[0], 0, 0, 0)
|
|
|
|
img = img.reshape((ceiled, ceiled))
|
|
|
|
srp = img.shape
|
2023-12-21 19:52:19 +08:00
|
|
|
if autoPad and (max(srp) / min(srp) > 16):
|
2023-12-21 21:20:49 +08:00
|
|
|
img = cv2.resize(img, [max(srp), max(srp)])
|
|
|
|
srp = img.shape
|
2023-12-21 19:52:19 +08:00
|
|
|
if scale != 1.0:
|
|
|
|
img = cv2.resize(img, [int(srp[0] * scale), int(srp[1] * scale)])
|
2023-12-21 21:20:49 +08:00
|
|
|
srp = img.shape
|
2023-12-21 19:52:19 +08:00
|
|
|
cv2.imwrite(name, img)
|