2024-01-06 21:05:39 +08:00
|
|
|
# coding=utf-8
|
|
|
|
# Copyright 2022 HuggingFace Inc. team and BigScience workshop.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
"""PyTorch BLOOM model."""
|
|
|
|
|
|
|
|
import math
|
|
|
|
import warnings
|
|
|
|
from typing import Optional, Tuple, Union
|
|
|
|
|
|
|
|
import torch
|
|
|
|
import torch.utils.checkpoint
|
|
|
|
from torch import nn
|
|
|
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, LayerNorm, MSELoss
|
|
|
|
from torch.nn import functional as F
|
|
|
|
|
|
|
|
from transformers.file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
|
|
|
|
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
|
|
|
|
from transformers.modeling_outputs import (
|
|
|
|
BaseModelOutputWithPastAndCrossAttentions,
|
|
|
|
CausalLMOutputWithCrossAttentions,
|
|
|
|
QuestionAnsweringModelOutput,
|
|
|
|
SequenceClassifierOutputWithPast,
|
|
|
|
TokenClassifierOutput,
|
|
|
|
)
|
|
|
|
from transformers.modeling_utils import PreTrainedModel
|
|
|
|
from transformers.utils import logging
|
|
|
|
from configuration_bloom import BloomConfig
|
|
|
|
|
|
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
|
|
_CHECKPOINT_FOR_DOC = "bigscience/bloom-560m"
|
|
|
|
_CONFIG_FOR_DOC = "BloomConfig"
|
|
|
|
|
|
|
|
BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
|
|
|
"bigscience/bigscience-small-testing",
|
|
|
|
"bigscience/bloom-560m",
|
|
|
|
"bigscience/bloom-1b1",
|
|
|
|
"bigscience/bloom-1b7",
|
|
|
|
"bigscience/bloom-3b",
|
|
|
|
"bigscience/bloom-7b1",
|
|
|
|
"bigscience/bloom",
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
|
|
def build_alibi_tensor(attention_mask: torch.Tensor, num_heads: int, dtype: torch.dtype) -> torch.Tensor:
|
|
|
|
"""
|
|
|
|
Link to paper: https://arxiv.org/abs/2108.12409 Alibi tensor is not causal as the original paper mentions, it
|
|
|
|
relies on a translation invariance of softmax for quick implementation: with l being a tensor, and a fixed value
|
|
|
|
`softmax(l+a) = softmax(l)`. Based on
|
|
|
|
https://github.com/ofirpress/attention_with_linear_biases/blob/a35aaca144e0eb6b789dfcb46784c4b8e31b7983/fairseq/models/transformer.py#L742
|
|
|
|
TODO @thomasw21 this doesn't work as nicely due to the masking strategy, and so masking varies slightly.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
Returns tensor shaped (batch_size * num_heads, 1, max_seq_len)
|
|
|
|
attention_mask (`torch.Tensor`):
|
|
|
|
Token-wise attention mask, this should be of shape (batch_size, max_seq_len).
|
|
|
|
num_heads (`int`, *required*):
|
|
|
|
number of heads
|
|
|
|
dtype (`torch.dtype`, *optional*, default=`torch.bfloat16`):
|
|
|
|
dtype of the output tensor
|
|
|
|
"""
|
|
|
|
batch_size, seq_length = attention_mask.shape
|
|
|
|
closest_power_of_2 = 2 ** math.floor(math.log2(num_heads))
|
|
|
|
base = torch.tensor(
|
|
|
|
2 ** (-(2 ** -(math.log2(closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32
|
|
|
|
)
|
|
|
|
powers = torch.arange(1, 1 + closest_power_of_2, device=attention_mask.device, dtype=torch.int32)
|
|
|
|
slopes = torch.pow(base, powers)
|
|
|
|
|
|
|
|
if closest_power_of_2 != num_heads:
|
|
|
|
extra_base = torch.tensor(
|
|
|
|
2 ** (-(2 ** -(math.log2(2 * closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32
|
|
|
|
)
|
|
|
|
num_remaining_heads = min(closest_power_of_2, num_heads - closest_power_of_2)
|
|
|
|
extra_powers = torch.arange(1, 1 + 2 * num_remaining_heads, 2, device=attention_mask.device, dtype=torch.int32)
|
|
|
|
slopes = torch.cat([slopes, torch.pow(extra_base, extra_powers)], dim=0)
|
|
|
|
|
|
|
|
# Note: alibi will added to the attention bias that will be applied to the query, key product of attention
|
|
|
|
# => therefore alibi will have to be of shape (batch_size, num_heads, query_length, key_length)
|
|
|
|
# => here we set (batch_size=1, num_heads=num_heads, query_length=1, key_length=max_length)
|
|
|
|
# => the query_length dimension will then be broadcasted correctly
|
|
|
|
# This is more or less identical to T5's relative position bias:
|
|
|
|
# https://github.com/huggingface/transformers/blob/f681437203baa7671de3174b0fa583c349d9d5e1/src/transformers/models/t5/modeling_t5.py#L527
|
|
|
|
arange_tensor = ((attention_mask.cumsum(dim=-1) - 1) * attention_mask)[:, None, :]
|
|
|
|
alibi = slopes[..., None] * arange_tensor
|
|
|
|
return alibi.reshape(batch_size * num_heads, 1, seq_length).to(dtype)
|
|
|
|
|
|
|
|
|
|
|
|
def dropout_add(x: torch.Tensor, residual: torch.Tensor, prob: float, training: bool) -> torch.Tensor:
|
|
|
|
"""
|
|
|
|
Dropout add function
|
|
|
|
|
|
|
|
Args:
|
|
|
|
x (`torch.tensor`, *required*):
|
|
|
|
input tensor
|
|
|
|
residual (`torch.tensor`, *required*):
|
|
|
|
residual tensor
|
|
|
|
prob (`float`, *required*):
|
|
|
|
dropout probability
|
|
|
|
training (`bool`, *required*):
|
|
|
|
training mode
|
|
|
|
"""
|
|
|
|
out = F.dropout(x, p=prob, training=training)
|
|
|
|
out = residual + out
|
|
|
|
return out
|
|
|
|
|
|
|
|
|
|
|
|
def bloom_gelu_forward(x: torch.Tensor) -> torch.Tensor:
|
|
|
|
"""
|
|
|
|
Custom bias GELU function. Adapted from Megatron-DeepSpeed code. Here we use a simple implementation (inference) to
|
|
|
|
make the model jitable.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
x (`torch.tensor`, *required*):
|
|
|
|
input hidden states
|
|
|
|
"""
|
|
|
|
return x * 0.5 * (1.0 + torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x)))
|
|
|
|
|
|
|
|
|
|
|
|
def bloom_gelu_back(g: torch.Tensor, x: torch.Tensor) -> torch.Tensor:
|
|
|
|
"""
|
|
|
|
gradient of tanh approximation of gelu gradient of actual gelu is: 0.5 * (1. + torch.erf(x * 0.70710678)) +
|
|
|
|
0.3989423 * x * torch.exp(-0.5 * x * x)
|
|
|
|
|
|
|
|
Args:
|
|
|
|
g (`torch.tensor`, *required*):
|
|
|
|
gradient output tensor
|
|
|
|
x (`torch.tensor`, *required*):
|
|
|
|
input tensor
|
|
|
|
"""
|
|
|
|
x = x[0] # x is a tuple of 1 element, needs to unpack it first
|
|
|
|
tanh_out = torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x))
|
|
|
|
# sqrt(2/pi) * 3 * 0.044715 -> 0.1070322243
|
|
|
|
ff = 0.5 * x * ((1 - tanh_out * tanh_out) * (0.79788456 + 0.1070322243 * x * x)) + 0.5 * (1 + tanh_out)
|
|
|
|
return ff * g
|
|
|
|
|
|
|
|
|
|
|
|
class GeLUFunction(torch.autograd.Function):
|
|
|
|
@staticmethod
|
|
|
|
def forward(ctx, input: torch.Tensor) -> torch.Tensor:
|
|
|
|
ctx.save_for_backward(input)
|
|
|
|
return bloom_gelu_forward(input)
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def backward(ctx, grad_output: torch.Tensor) -> torch.Tensor:
|
|
|
|
input = ctx.saved_tensors
|
|
|
|
tmp = bloom_gelu_back(grad_output, input)
|
|
|
|
return tmp
|
|
|
|
|
|
|
|
|
|
|
|
class BloomGelu(nn.Module):
|
|
|
|
"""
|
|
|
|
BloomBiasGelu wrapper function that make use of the simple function on inference mode to make the model
|
|
|
|
torchscriptable and use the autograd function in training mode to get the accurate results of the gradients Partly
|
|
|
|
copied from Megatron-DeepSpeed code and adapted for our needs
|
|
|
|
|
|
|
|
See here why autograd functions are not torchscriptable: https://github.com/pytorch/pytorch/issues/22329
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self):
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
|
|
if self.training:
|
|
|
|
return GeLUFunction.apply(x)
|
|
|
|
else:
|
|
|
|
return bloom_gelu_forward(x)
|
|
|
|
|
|
|
|
|
|
|
|
class BloomAttention(nn.Module):
|
|
|
|
def __init__(self, config: BloomConfig):
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
self.pretraining_tp = config.pretraining_tp
|
|
|
|
self.slow_but_exact = config.slow_but_exact
|
|
|
|
|
|
|
|
self.hidden_size = config.hidden_size
|
|
|
|
self.num_heads = config.n_head
|
|
|
|
self.head_dim = self.hidden_size // self.num_heads
|
|
|
|
self.split_size = self.hidden_size
|
|
|
|
self.hidden_dropout = config.hidden_dropout
|
|
|
|
|
|
|
|
if self.head_dim * self.num_heads != self.hidden_size:
|
|
|
|
raise ValueError(
|
|
|
|
f"`hidden_size` must be divisible by num_heads (got `hidden_size`: {self.hidden_size} and `num_heads`:"
|
|
|
|
f" {self.num_heads})."
|
|
|
|
)
|
|
|
|
|
|
|
|
# Layer-wise attention scaling
|
|
|
|
self.inv_norm_factor = 1.0 / math.sqrt(self.head_dim)
|
|
|
|
self.beta = 1.0
|
|
|
|
|
|
|
|
self.query_key_value = nn.Linear(self.hidden_size, 3 * self.hidden_size, bias=True)
|
|
|
|
self.dense = nn.Linear(self.hidden_size, self.hidden_size)
|
|
|
|
self.attention_dropout = nn.Dropout(config.attention_dropout)
|
|
|
|
|
|
|
|
def _split_heads(self, fused_qkv: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
|
|
|
"""
|
|
|
|
Split the last dimension into (num_heads, head_dim) without making any copies, results share same memory
|
|
|
|
storage as `fused_qkv`
|
|
|
|
|
|
|
|
Args:
|
|
|
|
fused_qkv (`torch.tensor`, *required*): [batch_size, seq_length, num_heads * 3 * head_dim]
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
query: [batch_size, seq_length, num_heads, head_dim] key: [batch_size, seq_length, num_heads, head_dim]
|
|
|
|
value: [batch_size, seq_length, num_heads, head_dim]
|
|
|
|
"""
|
|
|
|
batch_size, seq_length, three_times_hidden_size = fused_qkv.shape
|
|
|
|
fused_qkv = fused_qkv.view(batch_size, seq_length, self.num_heads, 3, self.head_dim)
|
|
|
|
return fused_qkv[..., 0, :], fused_qkv[..., 1, :], fused_qkv[..., 2, :]
|
|
|
|
|
|
|
|
def _merge_heads(self, x: torch.Tensor) -> torch.Tensor:
|
|
|
|
"""
|
|
|
|
Merge heads together over the last dimension
|
|
|
|
|
|
|
|
Args:
|
|
|
|
x (`torch.tensor`, *required*): [batch_size * num_heads, seq_length, head_dim]
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
torch.tensor: [batch_size, seq_length, num_heads * head_dim]
|
|
|
|
"""
|
|
|
|
# What we want to achieve is:
|
|
|
|
# batch_size * num_heads, seq_length, head_dim -> batch_size, seq_length, num_heads * head_dim
|
|
|
|
batch_size_and_num_heads, seq_length, _ = x.shape
|
|
|
|
batch_size = batch_size_and_num_heads // self.num_heads
|
|
|
|
|
|
|
|
# First view to decompose the batch size
|
|
|
|
# batch_size * num_heads, seq_length, head_dim -> batch_size, num_heads, seq_length, head_dim
|
|
|
|
x = x.view(batch_size, self.num_heads, seq_length, self.head_dim)
|
|
|
|
|
|
|
|
# batch_size, num_heads, seq_length, head_dim -> batch_size, seq_length, num_heads, head_dim
|
|
|
|
x = x.permute(0, 2, 1, 3)
|
|
|
|
|
|
|
|
# batch_size, seq_length, num_heads, head_dim -> batch_size, seq_length, num_heads * head_dim
|
|
|
|
return x.reshape(batch_size, seq_length, self.num_heads * self.head_dim)
|
|
|
|
|
|
|
|
def forward(
|
|
|
|
self,
|
|
|
|
hidden_states: torch.Tensor,
|
|
|
|
residual: torch.Tensor,
|
|
|
|
alibi: torch.Tensor,
|
|
|
|
attention_mask: torch.Tensor,
|
|
|
|
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
|
|
|
head_mask: Optional[torch.Tensor] = None,
|
|
|
|
use_cache: bool = False,
|
|
|
|
output_attentions: bool = False,
|
|
|
|
):
|
|
|
|
fused_qkv = self.query_key_value(hidden_states) # [batch_size, seq_length, 3 x hidden_size]
|
|
|
|
|
|
|
|
# 3 x [batch_size, seq_length, num_heads, head_dim]
|
|
|
|
(query_layer, key_layer, value_layer) = self._split_heads(fused_qkv)
|
|
|
|
|
|
|
|
batch_size, q_length, _, _ = query_layer.shape
|
|
|
|
|
|
|
|
query_layer = query_layer.transpose(1, 2).reshape(batch_size * self.num_heads, q_length, self.head_dim)
|
|
|
|
key_layer = key_layer.permute(0, 2, 3, 1).reshape(batch_size * self.num_heads, self.head_dim, q_length)
|
|
|
|
value_layer = value_layer.transpose(1, 2).reshape(batch_size * self.num_heads, q_length, self.head_dim)
|
|
|
|
if layer_past is not None:
|
|
|
|
past_key, past_value = layer_past
|
|
|
|
# concatenate along seq_length dimension:
|
|
|
|
# - key: [batch_size * self.num_heads, head_dim, kv_length]
|
|
|
|
# - value: [batch_size * self.num_heads, kv_length, head_dim]
|
|
|
|
key_layer = torch.cat((past_key, key_layer), dim=2)
|
|
|
|
value_layer = torch.cat((past_value, value_layer), dim=1)
|
|
|
|
|
|
|
|
_, _, kv_length = key_layer.shape
|
|
|
|
|
|
|
|
if use_cache is True:
|
|
|
|
present = (key_layer, value_layer)
|
|
|
|
else:
|
|
|
|
present = None
|
|
|
|
|
|
|
|
# [batch_size * num_heads, q_length, kv_length]
|
|
|
|
# we use `torch.Tensor.baddbmm` instead of `torch.baddbmm` as the latter isn't supported by TorchScript v1.11
|
|
|
|
matmul_result = alibi.baddbmm(
|
|
|
|
batch1=query_layer,
|
|
|
|
batch2=key_layer,
|
|
|
|
beta=self.beta,
|
|
|
|
alpha=self.inv_norm_factor,
|
|
|
|
)
|
|
|
|
|
|
|
|
# change view to [batch_size, num_heads, q_length, kv_length]
|
|
|
|
attention_scores = matmul_result.view(batch_size, self.num_heads, q_length, kv_length)
|
|
|
|
|
|
|
|
# cast attention scores to fp32, compute scaled softmax and cast back to initial dtype - [batch_size, num_heads, q_length, kv_length]
|
|
|
|
input_dtype = attention_scores.dtype
|
|
|
|
# `float16` has a minimum value of -65504.0, whereas `bfloat16` and `float32` have a minimum value of `-3.4e+38`
|
|
|
|
if input_dtype == torch.float16:
|
|
|
|
attention_scores = attention_scores.to(torch.float)
|
|
|
|
attn_weights = torch.masked_fill(attention_scores, attention_mask, torch.finfo(attention_scores.dtype).min)
|
|
|
|
attention_probs = F.softmax(attn_weights, dim=-1, dtype=torch.float32).to(input_dtype)
|
|
|
|
|
|
|
|
# [batch_size, num_heads, q_length, kv_length]
|
|
|
|
attention_probs = self.attention_dropout(attention_probs)
|
|
|
|
|
|
|
|
if head_mask is not None:
|
|
|
|
attention_probs = attention_probs * head_mask
|
|
|
|
|
|
|
|
# change view [batch_size x num_heads, q_length, kv_length]
|
|
|
|
attention_probs_reshaped = attention_probs.view(batch_size * self.num_heads, q_length, kv_length)
|
|
|
|
|
|
|
|
# matmul: [batch_size * num_heads, q_length, head_dim]
|
|
|
|
context_layer = torch.bmm(attention_probs_reshaped, value_layer)
|
|
|
|
|
|
|
|
# change view [batch_size, q_length, num_heads * head_dim]
|
|
|
|
context_layer = self._merge_heads(context_layer)
|
|
|
|
|
|
|
|
# aggregate results across tp ranks. See here: https://github.com/pytorch/pytorch/issues/76232
|
|
|
|
if self.pretraining_tp > 1 and self.slow_but_exact:
|
|
|
|
slices = self.hidden_size / self.pretraining_tp
|
|
|
|
output_tensor = torch.zeros_like(context_layer)
|
|
|
|
for i in range(self.pretraining_tp):
|
|
|
|
output_tensor = output_tensor + F.linear(
|
|
|
|
context_layer[:, :, int(i * slices) : int((i + 1) * slices)],
|
|
|
|
self.dense.weight[:, int(i * slices) : int((i + 1) * slices)],
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
output_tensor = self.dense(context_layer)
|
|
|
|
|
|
|
|
output_tensor = dropout_add(output_tensor, residual, self.hidden_dropout, self.training)
|
|
|
|
|
|
|
|
outputs = (output_tensor, present)
|
|
|
|
if output_attentions:
|
|
|
|
outputs += (attention_probs,)
|
|
|
|
|
|
|
|
return outputs
|
|
|
|
|
|
|
|
|
|
|
|
class BloomMLP(nn.Module):
|
|
|
|
def __init__(self, config: BloomConfig):
|
|
|
|
super().__init__()
|
|
|
|
hidden_size = config.hidden_size
|
|
|
|
|
|
|
|
self.pretraining_tp = config.pretraining_tp
|
|
|
|
self.slow_but_exact = config.slow_but_exact
|
|
|
|
self.dense_h_to_4h = nn.Linear(hidden_size, 4 * hidden_size)
|
|
|
|
self.gelu_impl = BloomGelu()
|
|
|
|
self.dense_4h_to_h = nn.Linear(4 * hidden_size, hidden_size)
|
|
|
|
self.hidden_dropout = config.hidden_dropout
|
|
|
|
|
|
|
|
def forward(self, hidden_states: torch.Tensor, residual: torch.Tensor) -> torch.Tensor:
|
|
|
|
hidden_states = self.gelu_impl(self.dense_h_to_4h(hidden_states))
|
|
|
|
|
|
|
|
if self.pretraining_tp > 1 and self.slow_but_exact:
|
|
|
|
intermediate_output = torch.zeros_like(residual)
|
|
|
|
slices = self.dense_4h_to_h.weight.shape[-1] / self.pretraining_tp
|
|
|
|
for i in range(self.pretraining_tp):
|
|
|
|
intermediate_output = intermediate_output + F.linear(
|
|
|
|
hidden_states[:, :, int(i * slices) : int((i + 1) * slices)],
|
|
|
|
self.dense_4h_to_h.weight[:, int(i * slices) : int((i + 1) * slices)],
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
intermediate_output = self.dense_4h_to_h(hidden_states)
|
|
|
|
|
|
|
|
output = dropout_add(intermediate_output, residual, self.hidden_dropout, self.training)
|
|
|
|
|
|
|
|
return output
|
|
|
|
|
|
|
|
|
|
|
|
class BloomBlock(nn.Module):
|
|
|
|
def __init__(self, config: BloomConfig):
|
|
|
|
super().__init__()
|
|
|
|
hidden_size = config.hidden_size
|
|
|
|
|
|
|
|
self.input_layernorm = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
|
|
|
self.num_heads = config.n_head
|
|
|
|
self.self_attention = BloomAttention(config)
|
|
|
|
self.post_attention_layernorm = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
|
|
|
|
|
|
|
self.mlp = BloomMLP(config)
|
|
|
|
|
|
|
|
self.apply_residual_connection_post_layernorm = config.apply_residual_connection_post_layernorm
|
|
|
|
self.hidden_dropout = config.hidden_dropout
|
|
|
|
|
|
|
|
def forward(
|
|
|
|
self,
|
|
|
|
hidden_states: torch.Tensor,
|
|
|
|
alibi: torch.Tensor,
|
|
|
|
attention_mask: torch.Tensor,
|
|
|
|
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
|
|
|
head_mask: Optional[torch.Tensor] = None,
|
|
|
|
use_cache: bool = False,
|
|
|
|
output_attentions: bool = False,
|
|
|
|
):
|
|
|
|
# hidden_states: [batch_size, seq_length, hidden_size]
|
|
|
|
|
|
|
|
# Layer norm at the beginning of the transformer layer.
|
|
|
|
layernorm_output = self.input_layernorm(hidden_states)
|
|
|
|
|
|
|
|
# Layer norm post the self attention.
|
|
|
|
if self.apply_residual_connection_post_layernorm:
|
|
|
|
residual = layernorm_output
|
|
|
|
else:
|
|
|
|
residual = hidden_states
|
|
|
|
|
|
|
|
# Self attention.
|
|
|
|
attn_outputs = self.self_attention(
|
|
|
|
layernorm_output,
|
|
|
|
residual,
|
|
|
|
layer_past=layer_past,
|
|
|
|
attention_mask=attention_mask,
|
|
|
|
alibi=alibi,
|
|
|
|
head_mask=head_mask,
|
|
|
|
use_cache=use_cache,
|
|
|
|
output_attentions=output_attentions,
|
|
|
|
)
|
|
|
|
|
|
|
|
attention_output = attn_outputs[0]
|
|
|
|
|
|
|
|
outputs = attn_outputs[1:]
|
|
|
|
|
|
|
|
layernorm_output = self.post_attention_layernorm(attention_output)
|
|
|
|
|
|
|
|
# Get residual
|
|
|
|
if self.apply_residual_connection_post_layernorm:
|
|
|
|
residual = layernorm_output
|
|
|
|
else:
|
|
|
|
residual = attention_output
|
|
|
|
|
|
|
|
# MLP.
|
|
|
|
output = self.mlp(layernorm_output, residual)
|
|
|
|
|
|
|
|
if use_cache:
|
|
|
|
outputs = (output,) + outputs
|
|
|
|
else:
|
|
|
|
outputs = (output,) + outputs[1:]
|
|
|
|
|
|
|
|
return outputs # hidden_states, present, attentions
|
|
|
|
|
|
|
|
|
|
|
|
class BloomPreTrainedModel(PreTrainedModel):
|
|
|
|
config_class = BloomConfig
|
|
|
|
base_model_prefix = "transformer"
|
|
|
|
supports_gradient_checkpointing = True
|
|
|
|
_no_split_modules = ["BloomBlock"]
|
|
|
|
_skip_keys_device_placement = "past_key_values"
|
|
|
|
|
|
|
|
def __init__(self, *inputs, **kwargs):
|
|
|
|
super().__init__(*inputs, **kwargs)
|
|
|
|
|
|
|
|
def _init_weights(self, module: nn.Module):
|
|
|
|
"""Initialize the weights."""
|
|
|
|
if isinstance(module, nn.Linear):
|
|
|
|
# Slightly different from the TF version which uses truncated_normal for initialization
|
|
|
|
# cf https://github.com/pytorch/pytorch/pull/5617
|
|
|
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
|
|
|
if module.bias is not None:
|
|
|
|
module.bias.data.zero_()
|
|
|
|
elif isinstance(module, nn.Embedding):
|
|
|
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
|
|
|
if module.padding_idx is not None:
|
|
|
|
module.weight.data[module.padding_idx].zero_()
|
|
|
|
elif isinstance(module, LayerNorm):
|
|
|
|
module.bias.data.zero_()
|
|
|
|
module.weight.data.fill_(1.0)
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def _convert_to_standard_cache(
|
|
|
|
past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]], batch_size: int
|
|
|
|
) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]:
|
|
|
|
"""
|
|
|
|
Standardizes the format of the cache so as to match most implementations, i.e. to tuple(tuple([batch_size,
|
|
|
|
num_heads, ...]))
|
|
|
|
"""
|
|
|
|
batch_size_times_num_heads, head_dim, seq_length = past_key_value[0][0].shape
|
|
|
|
num_heads = batch_size_times_num_heads // batch_size
|
|
|
|
# key: [batch_size * num_heads, head_dim, seq_length] -> [batch_size, num_heads, head_dim, seq_length]
|
|
|
|
# value: [batch_size * num_heads, seq_length, head_dim] -> [batch_size, num_heads, seq_length, head_dim]
|
|
|
|
return tuple(
|
|
|
|
(
|
|
|
|
layer_past[0].view(batch_size, num_heads, head_dim, seq_length),
|
|
|
|
layer_past[1].view(batch_size, num_heads, seq_length, head_dim),
|
|
|
|
)
|
|
|
|
for layer_past in past_key_value
|
|
|
|
)
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def _convert_to_bloom_cache(
|
|
|
|
past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]],
|
|
|
|
) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]:
|
|
|
|
"""
|
|
|
|
Converts the cache to the format expected by Bloom, i.e. to tuple(tuple([batch_size * num_heads, ...]))
|
|
|
|
"""
|
|
|
|
batch_size, num_heads, head_dim, seq_length = past_key_value[0][0].shape
|
|
|
|
batch_size_times_num_heads = batch_size * num_heads
|
|
|
|
# key: [batch_size, num_heads, head_dim, seq_length] -> [batch_size * num_heads, head_dim, seq_length]
|
|
|
|
# value: [batch_size, num_heads, seq_length, head_dim] -> [batch_size * num_heads, seq_length, head_dim]
|
|
|
|
return tuple(
|
|
|
|
(
|
|
|
|
layer_past[0].view(batch_size_times_num_heads, head_dim, seq_length),
|
|
|
|
layer_past[1].view(batch_size_times_num_heads, seq_length, head_dim),
|
|
|
|
)
|
|
|
|
for layer_past in past_key_value
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
BLOOM_START_DOCSTRING = r"""
|
|
|
|
|
|
|
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
|
|
|
library implements for all its model (such as downloading or saving, resizing the input embeddings etc.)
|
|
|
|
|
|
|
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
|
|
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
|
|
|
and behavior.
|
|
|
|
|
|
|
|
Parameters:
|
|
|
|
config ([`BloomConfig`]): Model configuration class with all the parameters of the model.
|
|
|
|
Initializing with a config file does not load the weights associated with the model, only the
|
|
|
|
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
|
|
|
"""
|
|
|
|
|
|
|
|
BLOOM_INPUTS_DOCSTRING = r"""
|
|
|
|
Args:
|
|
|
|
input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`):
|
|
|
|
`input_ids_length` = `sequence_length` if `past_key_values` is `None` else `past_key_values[0][0].shape[2]`
|
|
|
|
(`sequence_length` of input past key value states). Indices of input sequence tokens in the vocabulary.
|
|
|
|
|
|
|
|
If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as
|
|
|
|
`input_ids`.
|
|
|
|
|
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
|
|
|
[`PreTrainedTokenizer.__call__`] for details.
|
|
|
|
|
|
|
|
[What are input IDs?](../glossary#input-ids)
|
|
|
|
past_key_values (`Tuple[Tuple[torch.Tensor]]` of length `config.n_layers`):
|
|
|
|
Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see
|
|
|
|
`past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have
|
|
|
|
their past given to this model should not be passed as `input_ids` as they have already been computed.
|
|
|
|
|
|
|
|
Each element of `past_key_values` is a tuple (past_key, past_value):
|
|
|
|
- past_key: [batch_size * num_heads, head_dim, kv_length]
|
|
|
|
- past_value: [batch_size * num_heads, kv_length, head_dim]
|
|
|
|
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
|
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
|
|
|
|
|
|
|
- 1 for tokens that are **not masked**,
|
|
|
|
- 0 for tokens that are **masked**.
|
|
|
|
|
|
|
|
[What are attention masks?](../glossary#attention-mask)
|
|
|
|
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
|
|
|
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
|
|
|
|
|
|
|
- 1 indicates the head is **not masked**,
|
|
|
|
- 0 indicates the head is **masked**.
|
|
|
|
|
|
|
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
|
|
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
|
|
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
|
|
|
model's internal embedding lookup matrix.
|
|
|
|
|
|
|
|
If `past_key_values` is used, optionally only the last `inputs_embeds` have to be input (see
|
|
|
|
`past_key_values`).
|
|
|
|
use_cache (`bool`, *optional*):
|
|
|
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
|
|
|
`past_key_values`).
|
|
|
|
output_attentions (`bool`, *optional*):
|
|
|
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
|
|
|
tensors for more detail.
|
|
|
|
output_hidden_states (`bool`, *optional*):
|
|
|
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
|
|
|
more detail.
|
|
|
|
return_dict (`bool`, *optional*):
|
|
|
|
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
|
|
@add_start_docstrings(
|
|
|
|
"The bare Bloom Model transformer outputting raw hidden-states without any specific head on top.",
|
|
|
|
BLOOM_START_DOCSTRING,
|
|
|
|
)
|
|
|
|
class BloomModel(BloomPreTrainedModel):
|
|
|
|
def __init__(self, config: BloomConfig):
|
|
|
|
super().__init__(config)
|
|
|
|
|
|
|
|
self.embed_dim = config.hidden_size
|
|
|
|
self.num_heads = config.n_head
|
|
|
|
|
|
|
|
# Embedding + LN Embedding
|
|
|
|
self.word_embeddings = nn.Embedding(config.vocab_size, self.embed_dim)
|
|
|
|
self.word_embeddings_layernorm = LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
|
|
|
|
|
|
|
|
# Transformer blocks
|
|
|
|
self.h = nn.ModuleList([BloomBlock(config) for _ in range(config.num_hidden_layers)])
|
|
|
|
|
|
|
|
# Final Layer Norm
|
|
|
|
self.ln_f = LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
|
|
|
|
|
|
|
|
self.gradient_checkpointing = False
|
|
|
|
|
|
|
|
# Initialize weights and apply final processing
|
|
|
|
self.post_init()
|
|
|
|
|
|
|
|
def build_alibi_tensor(self, attention_mask: torch.Tensor, num_heads: int, dtype: torch.dtype) -> torch.Tensor:
|
|
|
|
return build_alibi_tensor(attention_mask, num_heads, dtype)
|
|
|
|
|
|
|
|
def get_input_embeddings(self):
|
|
|
|
return self.word_embeddings
|
|
|
|
|
|
|
|
def set_input_embeddings(self, new_embeddings: torch.Tensor):
|
|
|
|
self.word_embeddings = new_embeddings
|
|
|
|
|
|
|
|
@add_start_docstrings_to_model_forward(BLOOM_INPUTS_DOCSTRING)
|
|
|
|
@add_code_sample_docstrings(
|
|
|
|
checkpoint=_CHECKPOINT_FOR_DOC,
|
|
|
|
output_type=BaseModelOutputWithPastAndCrossAttentions,
|
|
|
|
config_class=_CONFIG_FOR_DOC,
|
|
|
|
)
|
|
|
|
def forward(
|
|
|
|
self,
|
|
|
|
input_ids: Optional[torch.LongTensor] = None,
|
|
|
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
|
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
|
|
head_mask: Optional[torch.LongTensor] = None,
|
|
|
|
inputs_embeds: Optional[torch.LongTensor] = None,
|
|
|
|
use_cache: Optional[bool] = None,
|
|
|
|
output_attentions: Optional[bool] = None,
|
|
|
|
output_hidden_states: Optional[bool] = None,
|
|
|
|
return_dict: Optional[bool] = None,
|
|
|
|
**deprecated_arguments,
|
|
|
|
) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]:
|
|
|
|
if deprecated_arguments.pop("position_ids", False) is not False:
|
|
|
|
# `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
|
|
|
|
warnings.warn(
|
|
|
|
"`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore"
|
|
|
|
" passing `position_ids`.",
|
|
|
|
FutureWarning,
|
|
|
|
)
|
|
|
|
if len(deprecated_arguments) > 0:
|
|
|
|
raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")
|
|
|
|
|
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
|
|
output_hidden_states = (
|
|
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
|
|
)
|
|
|
|
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
|
|
|
|
if input_ids is not None and inputs_embeds is not None:
|
|
|
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
|
|
|
elif input_ids is not None:
|
|
|
|
batch_size, seq_length = input_ids.shape
|
|
|
|
elif inputs_embeds is not None:
|
|
|
|
batch_size, seq_length, _ = inputs_embeds.shape
|
|
|
|
else:
|
|
|
|
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
|
|
|
|
|
|
|
if past_key_values is None:
|
|
|
|
past_key_values = tuple([None] * len(self.h))
|
|
|
|
|
|
|
|
# Prepare head mask if needed
|
|
|
|
# 1.0 in head_mask indicate we keep the head
|
|
|
|
# attention_probs has shape batch_size x num_heads x N x N
|
|
|
|
# head_mask has shape n_layer x batch x num_heads x N x N
|
|
|
|
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
|
|
|
|
|
|
|
|
if inputs_embeds is None:
|
|
|
|
inputs_embeds = self.word_embeddings(input_ids)
|
|
|
|
|
|
|
|
hidden_states = self.word_embeddings_layernorm(inputs_embeds)
|
|
|
|
|
|
|
|
presents = () if use_cache else None
|
|
|
|
all_self_attentions = () if output_attentions else None
|
|
|
|
all_hidden_states = () if output_hidden_states else None
|
|
|
|
|
|
|
|
if self.gradient_checkpointing and self.training:
|
|
|
|
if use_cache:
|
|
|
|
logger.warning_once(
|
|
|
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
|
|
|
)
|
|
|
|
use_cache = False
|
|
|
|
|
|
|
|
# Compute alibi tensor: check build_alibi_tensor documentation
|
|
|
|
seq_length_with_past = seq_length
|
|
|
|
past_key_values_length = 0
|
|
|
|
if past_key_values[0] is not None:
|
|
|
|
past_key_values_length = past_key_values[0][0].shape[2]
|
|
|
|
seq_length_with_past = seq_length_with_past + past_key_values_length
|
|
|
|
if attention_mask is None:
|
|
|
|
attention_mask = torch.ones((batch_size, seq_length_with_past), device=hidden_states.device)
|
|
|
|
else:
|
|
|
|
attention_mask = attention_mask.to(hidden_states.device)
|
|
|
|
|
|
|
|
alibi = self.build_alibi_tensor(attention_mask, self.num_heads, dtype=hidden_states.dtype)
|
|
|
|
|
|
|
|
causal_mask = _prepare_4d_causal_attention_mask(
|
|
|
|
attention_mask,
|
|
|
|
input_shape=(batch_size, seq_length),
|
|
|
|
inputs_embeds=inputs_embeds,
|
|
|
|
past_key_values_length=past_key_values_length,
|
|
|
|
)
|
|
|
|
causal_mask = causal_mask.bool()
|
|
|
|
|
|
|
|
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
|
|
|
|
if output_hidden_states:
|
|
|
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
|
|
|
|
|
|
|
if self.gradient_checkpointing and self.training:
|
|
|
|
outputs = self._gradient_checkpointing_func(
|
|
|
|
block.__call__,
|
|
|
|
hidden_states,
|
|
|
|
alibi,
|
|
|
|
causal_mask,
|
|
|
|
layer_past,
|
|
|
|
head_mask[i],
|
|
|
|
use_cache,
|
|
|
|
output_attentions,
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
outputs = block(
|
|
|
|
hidden_states,
|
|
|
|
layer_past=layer_past,
|
|
|
|
attention_mask=causal_mask,
|
|
|
|
head_mask=head_mask[i],
|
|
|
|
use_cache=use_cache,
|
|
|
|
output_attentions=output_attentions,
|
|
|
|
alibi=alibi,
|
|
|
|
)
|
|
|
|
|
|
|
|
hidden_states = outputs[0]
|
|
|
|
if use_cache is True:
|
|
|
|
presents = presents + (outputs[1],)
|
|
|
|
|
|
|
|
if output_attentions:
|
|
|
|
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
|
|
|
|
|
|
|
|
# Add last hidden state
|
|
|
|
hidden_states = self.ln_f(hidden_states)
|
|
|
|
|
|
|
|
if output_hidden_states:
|
|
|
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
|
|
|
|
|
|
|
if not return_dict:
|
|
|
|
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
|
|
|
|
|
|
|
|
return BaseModelOutputWithPastAndCrossAttentions(
|
|
|
|
last_hidden_state=hidden_states,
|
|
|
|
past_key_values=presents,
|
|
|
|
hidden_states=all_hidden_states,
|
|
|
|
attentions=all_self_attentions,
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
@add_start_docstrings(
|
|
|
|
"""
|
|
|
|
The Bloom Model transformer with a language modeling head on top (linear layer with weights tied to the input
|
|
|
|
embeddings).
|
|
|
|
""",
|
|
|
|
BLOOM_START_DOCSTRING,
|
|
|
|
)
|
|
|
|
class BloomForCausalLM(BloomPreTrainedModel):
|
|
|
|
_tied_weights_keys = ["lm_head.weight"]
|
|
|
|
|
|
|
|
def __init__(self, config: BloomConfig):
|
|
|
|
super().__init__(config)
|
|
|
|
self.transformer = BloomModel(config)
|
|
|
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
|
|
|
|
|
|
|
# Initialize weights and apply final processing
|
|
|
|
self.post_init()
|
|
|
|
|
|
|
|
def get_output_embeddings(self):
|
|
|
|
return self.lm_head
|
|
|
|
|
|
|
|
def set_output_embeddings(self, new_embeddings: torch.Tensor):
|
|
|
|
self.lm_head = new_embeddings
|
|
|
|
|
|
|
|
def prepare_inputs_for_generation(
|
|
|
|
self,
|
|
|
|
input_ids: torch.LongTensor,
|
|
|
|
past_key_values: Optional[torch.Tensor] = None,
|
|
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
|
|
inputs_embeds: Optional[torch.Tensor] = None,
|
|
|
|
**kwargs,
|
|
|
|
) -> dict:
|
|
|
|
# only last tokens for input_ids if past is not None
|
|
|
|
if past_key_values is not None:
|
|
|
|
past_length = past_key_values[0][0].shape[2]
|
|
|
|
|
|
|
|
# Some generation methods already pass only the last input ID
|
|
|
|
if input_ids.shape[1] > past_length:
|
|
|
|
remove_prefix_length = past_length
|
|
|
|
else:
|
|
|
|
# Default to old behavior: keep only final ID
|
|
|
|
remove_prefix_length = input_ids.shape[1] - 1
|
|
|
|
|
|
|
|
input_ids = input_ids[:, remove_prefix_length:]
|
|
|
|
|
|
|
|
# the cache may be in the stardard format (e.g. in contrastive search), convert to bloom's format if needed
|
|
|
|
if past_key_values[0][0].shape[0] == input_ids.shape[0]:
|
|
|
|
past_key_values = self._convert_to_bloom_cache(past_key_values)
|
|
|
|
|
|
|
|
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
|
|
|
if inputs_embeds is not None and past_key_values is None:
|
|
|
|
model_inputs = {"inputs_embeds": inputs_embeds}
|
|
|
|
else:
|
|
|
|
model_inputs = {"input_ids": input_ids}
|
|
|
|
|
|
|
|
model_inputs.update(
|
|
|
|
{
|
|
|
|
"past_key_values": past_key_values,
|
|
|
|
"use_cache": kwargs.get("use_cache"),
|
|
|
|
"attention_mask": attention_mask,
|
|
|
|
}
|
|
|
|
)
|
|
|
|
return model_inputs
|
|
|
|
|
|
|
|
@add_start_docstrings_to_model_forward(BLOOM_INPUTS_DOCSTRING)
|
|
|
|
@add_code_sample_docstrings(
|
|
|
|
checkpoint=_CHECKPOINT_FOR_DOC,
|
|
|
|
output_type=CausalLMOutputWithCrossAttentions,
|
|
|
|
config_class=_CONFIG_FOR_DOC,
|
|
|
|
)
|
|
|
|
def forward(
|
|
|
|
self,
|
|
|
|
input_ids: Optional[torch.LongTensor] = None,
|
|
|
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
|
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
|
|
head_mask: Optional[torch.Tensor] = None,
|
|
|
|
inputs_embeds: Optional[torch.Tensor] = None,
|
|
|
|
labels: Optional[torch.Tensor] = None,
|
|
|
|
use_cache: Optional[bool] = None,
|
|
|
|
output_attentions: Optional[bool] = None,
|
|
|
|
output_hidden_states: Optional[bool] = None,
|
|
|
|
return_dict: Optional[bool] = None,
|
|
|
|
**deprecated_arguments,
|
|
|
|
) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
|
|
|
|
r"""
|
|
|
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
|
|
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
|
|
|
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
|
|
|
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
|
|
|
"""
|
|
|
|
if deprecated_arguments.pop("position_ids", False) is not False:
|
|
|
|
# `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
|
|
|
|
warnings.warn(
|
|
|
|
"`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore"
|
|
|
|
" passing `position_ids`.",
|
|
|
|
FutureWarning,
|
|
|
|
)
|
|
|
|
if len(deprecated_arguments) > 0:
|
|
|
|
raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")
|
|
|
|
|
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
|
|
|
|
transformer_outputs = self.transformer(
|
|
|
|
input_ids,
|
|
|
|
past_key_values=past_key_values,
|
|
|
|
attention_mask=attention_mask,
|
|
|
|
head_mask=head_mask,
|
|
|
|
inputs_embeds=inputs_embeds,
|
|
|
|
use_cache=use_cache,
|
|
|
|
output_attentions=output_attentions,
|
|
|
|
output_hidden_states=output_hidden_states,
|
|
|
|
return_dict=return_dict,
|
|
|
|
)
|
|
|
|
hidden_states = transformer_outputs[0]
|
|
|
|
|
|
|
|
lm_logits = self.lm_head(hidden_states)
|
|
|
|
|
|
|
|
loss = None
|
|
|
|
if labels is not None:
|
|
|
|
# move labels to correct device to enable model parallelism
|
|
|
|
labels = labels.to(lm_logits.device)
|
|
|
|
# Shift so that tokens < n predict n
|
|
|
|
shift_logits = lm_logits[..., :-1, :].contiguous()
|
|
|
|
shift_labels = labels[..., 1:].contiguous()
|
|
|
|
batch_size, seq_length, vocab_size = shift_logits.shape
|
|
|
|
# Flatten the tokens
|
|
|
|
loss_fct = CrossEntropyLoss()
|
|
|
|
loss = loss_fct(
|
|
|
|
shift_logits.view(batch_size * seq_length, vocab_size), shift_labels.view(batch_size * seq_length)
|
|
|
|
)
|
|
|
|
|
2024-01-07 15:06:39 +08:00
|
|
|
# for test train
|
|
|
|
# shift_logits = lm_logits[..., :-1, :].contiguous()
|
|
|
|
# shift_labels = torch.ones([4,9], requires_grad=True).to(lm_logits.device).to(torch.int64)
|
|
|
|
# batch_size, seq_length, vocab_size = shift_logits.shape
|
|
|
|
# optimizer = torch.optim.SGD(self.parameters(),lr=0.001)
|
|
|
|
# pa = self.transformer.parameters()
|
|
|
|
# loss_fct = CrossEntropyLoss()
|
|
|
|
# loss = loss_fct(
|
|
|
|
# shift_logits.view(batch_size * seq_length, vocab_size), shift_labels.view(batch_size * seq_length)
|
|
|
|
# )
|
|
|
|
# loss.backward()
|
|
|
|
# optimizer.step()
|
|
|
|
|
2024-01-06 21:05:39 +08:00
|
|
|
if not return_dict:
|
|
|
|
output = (lm_logits,) + transformer_outputs[1:]
|
|
|
|
return ((loss,) + output) if loss is not None else output
|
|
|
|
|
|
|
|
return CausalLMOutputWithCrossAttentions(
|
|
|
|
loss=loss,
|
|
|
|
logits=lm_logits,
|
|
|
|
past_key_values=transformer_outputs.past_key_values,
|
|
|
|
hidden_states=transformer_outputs.hidden_states,
|
|
|
|
attentions=transformer_outputs.attentions,
|
|
|
|
)
|
|
|
|
|
|
|
|
def _reorder_cache(
|
|
|
|
self, past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor
|
|
|
|
) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]:
|
|
|
|
"""
|
|
|
|
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
|
|
|
|
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
|
|
|
|
beam_idx at every generation step.
|
|
|
|
|
|
|
|
Output shares the same memory storage as `past`.
|
|
|
|
"""
|
|
|
|
standardized_past = self._convert_to_standard_cache(past, batch_size=len(beam_idx))
|
|
|
|
|
|
|
|
# Get a copy of `beam_idx` on all the devices where we need those indices.
|
|
|
|
device_to_beam_idx = {
|
|
|
|
past_state.device: beam_idx.to(past_state.device) for layer_past in past for past_state in layer_past
|
|
|
|
}
|
|
|
|
reordered_past = tuple(
|
|
|
|
(
|
|
|
|
layer_past[0].index_select(0, device_to_beam_idx[layer_past[0].device]),
|
|
|
|
layer_past[1].index_select(0, device_to_beam_idx[layer_past[0].device]),
|
|
|
|
)
|
|
|
|
for layer_past in standardized_past
|
|
|
|
)
|
|
|
|
return self._convert_to_bloom_cache(reordered_past)
|
|
|
|
|
|
|
|
|
|
|
|
@add_start_docstrings(
|
|
|
|
"""
|
|
|
|
The Bloom Model transformer with a sequence classification head on top (linear layer).
|
|
|
|
|
|
|
|
[`BloomForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
|
|
|
(e.g. GPT-1) do.
|
|
|
|
|
|
|
|
Since it does classification on the last token, it requires to know the position of the last token. If a
|
|
|
|
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
|
|
|
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
|
|
|
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
|
|
|
each row of the batch).
|
|
|
|
""",
|
|
|
|
BLOOM_START_DOCSTRING,
|
|
|
|
)
|
|
|
|
class BloomForSequenceClassification(BloomPreTrainedModel):
|
|
|
|
def __init__(self, config: BloomConfig):
|
|
|
|
super().__init__(config)
|
|
|
|
self.num_labels = config.num_labels
|
|
|
|
self.transformer = BloomModel(config)
|
|
|
|
self.score = nn.Linear(config.hidden_size, config.num_labels, bias=False)
|
|
|
|
|
|
|
|
# Initialize weights and apply final processing
|
|
|
|
self.post_init()
|
|
|
|
|
|
|
|
@add_start_docstrings_to_model_forward(BLOOM_INPUTS_DOCSTRING)
|
|
|
|
@add_code_sample_docstrings(
|
|
|
|
checkpoint=_CHECKPOINT_FOR_DOC,
|
|
|
|
output_type=SequenceClassifierOutputWithPast,
|
|
|
|
config_class=_CONFIG_FOR_DOC,
|
|
|
|
)
|
|
|
|
def forward(
|
|
|
|
self,
|
|
|
|
input_ids: Optional[torch.LongTensor] = None,
|
|
|
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
|
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
|
|
head_mask: Optional[torch.Tensor] = None,
|
|
|
|
inputs_embeds: Optional[torch.Tensor] = None,
|
|
|
|
labels: Optional[torch.Tensor] = None,
|
|
|
|
use_cache: Optional[bool] = None,
|
|
|
|
output_attentions: Optional[bool] = None,
|
|
|
|
output_hidden_states: Optional[bool] = None,
|
|
|
|
return_dict: Optional[bool] = None,
|
|
|
|
**deprecated_arguments,
|
|
|
|
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutputWithPast]:
|
|
|
|
r"""
|
|
|
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
|
|
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
|
|
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
|
|
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
|
|
|
"""
|
|
|
|
if deprecated_arguments.pop("position_ids", False) is not False:
|
|
|
|
# `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
|
|
|
|
warnings.warn(
|
|
|
|
"`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore"
|
|
|
|
" passing `position_ids`.",
|
|
|
|
FutureWarning,
|
|
|
|
)
|
|
|
|
if len(deprecated_arguments) > 0:
|
|
|
|
raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")
|
|
|
|
|
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
|
|
|
|
transformer_outputs = self.transformer(
|
|
|
|
input_ids,
|
|
|
|
past_key_values=past_key_values,
|
|
|
|
attention_mask=attention_mask,
|
|
|
|
head_mask=head_mask,
|
|
|
|
inputs_embeds=inputs_embeds,
|
|
|
|
use_cache=use_cache,
|
|
|
|
output_attentions=output_attentions,
|
|
|
|
output_hidden_states=output_hidden_states,
|
|
|
|
return_dict=return_dict,
|
|
|
|
)
|
|
|
|
|
|
|
|
hidden_states = transformer_outputs[0]
|
|
|
|
logits = self.score(hidden_states)
|
|
|
|
|
|
|
|
if input_ids is not None:
|
|
|
|
batch_size = input_ids.shape[0]
|
|
|
|
else:
|
|
|
|
batch_size = inputs_embeds.shape[0]
|
|
|
|
|
|
|
|
if self.config.pad_token_id is None and batch_size != 1:
|
|
|
|
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
|
|
|
if self.config.pad_token_id is None:
|
|
|
|
sequence_lengths = -1
|
|
|
|
else:
|
|
|
|
if input_ids is not None:
|
|
|
|
sequence_lengths = (torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1).to(logits.device)
|
|
|
|
else:
|
|
|
|
sequence_lengths = -1
|
|
|
|
logger.warning(
|
|
|
|
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
|
|
|
|
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
|
|
|
|
)
|
|
|
|
|
|
|
|
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
|
|
|
|
|
|
|
loss = None
|
|
|
|
if labels is not None:
|
|
|
|
if self.config.problem_type is None:
|
|
|
|
if self.num_labels == 1:
|
|
|
|
self.config.problem_type = "regression"
|
|
|
|
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
|
|
|
self.config.problem_type = "single_label_classification"
|
|
|
|
else:
|
|
|
|
self.config.problem_type = "multi_label_classification"
|
|
|
|
|
|
|
|
if self.config.problem_type == "regression":
|
|
|
|
loss_fct = MSELoss()
|
|
|
|
if self.num_labels == 1:
|
|
|
|
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
|
|
|
else:
|
|
|
|
loss = loss_fct(pooled_logits, labels)
|
|
|
|
elif self.config.problem_type == "single_label_classification":
|
|
|
|
loss_fct = CrossEntropyLoss()
|
|
|
|
loss = loss_fct(pooled_logits, labels)
|
|
|
|
elif self.config.problem_type == "multi_label_classification":
|
|
|
|
loss_fct = BCEWithLogitsLoss()
|
|
|
|
loss = loss_fct(pooled_logits, labels)
|
|
|
|
if not return_dict:
|
|
|
|
output = (pooled_logits,) + transformer_outputs[1:]
|
|
|
|
return ((loss,) + output) if loss is not None else output
|
|
|
|
|
|
|
|
return SequenceClassifierOutputWithPast(
|
|
|
|
loss=loss,
|
|
|
|
logits=pooled_logits,
|
|
|
|
past_key_values=transformer_outputs.past_key_values,
|
|
|
|
hidden_states=transformer_outputs.hidden_states,
|
|
|
|
attentions=transformer_outputs.attentions,
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
@add_start_docstrings(
|
|
|
|
"""
|
|
|
|
Bloom Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
|
|
|
|
Named-Entity-Recognition (NER) tasks.
|
|
|
|
""",
|
|
|
|
BLOOM_START_DOCSTRING,
|
|
|
|
)
|
|
|
|
class BloomForTokenClassification(BloomPreTrainedModel):
|
|
|
|
def __init__(self, config: BloomConfig):
|
|
|
|
super().__init__(config)
|
|
|
|
self.num_labels = config.num_labels
|
|
|
|
|
|
|
|
self.transformer = BloomModel(config)
|
|
|
|
if hasattr(config, "classifier_dropout") and config.classifier_dropout is not None:
|
|
|
|
classifier_dropout = config.classifier_dropout
|
|
|
|
elif hasattr(config, "hidden_dropout") and config.hidden_dropout is not None:
|
|
|
|
classifier_dropout = config.hidden_dropout
|
|
|
|
else:
|
|
|
|
classifier_dropout = 0.1
|
|
|
|
self.dropout = nn.Dropout(classifier_dropout)
|
|
|
|
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
|
|
|
|
|
|
|
# Initialize weights and apply final processing
|
|
|
|
self.post_init()
|
|
|
|
|
|
|
|
@add_start_docstrings_to_model_forward(BLOOM_INPUTS_DOCSTRING)
|
|
|
|
@add_code_sample_docstrings(
|
|
|
|
checkpoint=_CHECKPOINT_FOR_DOC,
|
|
|
|
output_type=TokenClassifierOutput,
|
|
|
|
config_class=_CONFIG_FOR_DOC,
|
|
|
|
)
|
|
|
|
def forward(
|
|
|
|
self,
|
|
|
|
input_ids: Optional[torch.LongTensor] = None,
|
|
|
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
|
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
|
|
head_mask: Optional[torch.Tensor] = None,
|
|
|
|
inputs_embeds: Optional[torch.Tensor] = None,
|
|
|
|
labels: Optional[torch.Tensor] = None,
|
|
|
|
use_cache: Optional[bool] = None,
|
|
|
|
output_attentions: Optional[bool] = None,
|
|
|
|
output_hidden_states: Optional[bool] = None,
|
|
|
|
return_dict: Optional[bool] = None,
|
|
|
|
**deprecated_arguments,
|
|
|
|
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
|
|
|
|
r"""
|
|
|
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
|
|
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
|
|
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
|
|
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
|
|
|
"""
|
|
|
|
if deprecated_arguments.pop("position_ids", False) is not False:
|
|
|
|
# `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
|
|
|
|
warnings.warn(
|
|
|
|
"`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore"
|
|
|
|
" passing `position_ids`.",
|
|
|
|
FutureWarning,
|
|
|
|
)
|
|
|
|
if len(deprecated_arguments) > 0:
|
|
|
|
raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")
|
|
|
|
|
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
|
|
|
|
transformer_outputs = self.transformer(
|
|
|
|
input_ids,
|
|
|
|
past_key_values=past_key_values,
|
|
|
|
attention_mask=attention_mask,
|
|
|
|
head_mask=head_mask,
|
|
|
|
inputs_embeds=inputs_embeds,
|
|
|
|
use_cache=use_cache,
|
|
|
|
output_attentions=output_attentions,
|
|
|
|
output_hidden_states=output_hidden_states,
|
|
|
|
return_dict=return_dict,
|
|
|
|
)
|
|
|
|
|
|
|
|
hidden_states = transformer_outputs[0]
|
|
|
|
hidden_states = self.dropout(hidden_states)
|
|
|
|
logits = self.classifier(hidden_states)
|
|
|
|
|
|
|
|
loss = None
|
|
|
|
if labels is not None:
|
|
|
|
# move labels to correct device to enable model parallelism
|
|
|
|
labels = labels.to(logits.device)
|
|
|
|
batch_size, seq_length = labels.shape
|
|
|
|
loss_fct = CrossEntropyLoss()
|
|
|
|
loss = loss_fct(
|
|
|
|
logits.view(batch_size * seq_length, self.num_labels), labels.view(batch_size * seq_length)
|
|
|
|
)
|
|
|
|
|
|
|
|
if not return_dict:
|
|
|
|
output = (logits,) + transformer_outputs[2:]
|
|
|
|
return ((loss,) + output) if loss is not None else output
|
|
|
|
|
|
|
|
return TokenClassifierOutput(
|
|
|
|
loss=loss,
|
|
|
|
logits=logits,
|
|
|
|
hidden_states=transformer_outputs.hidden_states,
|
|
|
|
attentions=transformer_outputs.attentions,
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
@add_start_docstrings(
|
|
|
|
"""
|
|
|
|
The BLOOM Model transformer with a span classification head on top for extractive question-answering tasks like
|
|
|
|
SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
|
|
|
""",
|
|
|
|
BLOOM_START_DOCSTRING,
|
|
|
|
)
|
|
|
|
class BloomForQuestionAnswering(BloomPreTrainedModel):
|
|
|
|
def __init__(self, config):
|
|
|
|
super().__init__(config)
|
|
|
|
self.transformer = BloomModel(config)
|
|
|
|
self.qa_outputs = nn.Linear(config.hidden_size, 2)
|
|
|
|
|
|
|
|
# Initialize weights and apply final processing
|
|
|
|
self.post_init()
|
|
|
|
|
|
|
|
@add_start_docstrings_to_model_forward(BLOOM_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
|
|
|
def forward(
|
|
|
|
self,
|
|
|
|
input_ids: Optional[torch.LongTensor] = None,
|
|
|
|
attention_mask: Optional[torch.FloatTensor] = None,
|
|
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
|
|
head_mask: Optional[torch.FloatTensor] = None,
|
|
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
|
|
start_positions: Optional[torch.LongTensor] = None,
|
|
|
|
end_positions: Optional[torch.LongTensor] = None,
|
|
|
|
output_attentions: Optional[bool] = None,
|
|
|
|
output_hidden_states: Optional[bool] = None,
|
|
|
|
return_dict: Optional[bool] = None,
|
|
|
|
) -> Union[Tuple, QuestionAnsweringModelOutput]:
|
|
|
|
r"""
|
|
|
|
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
|
|
|
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
|
|
|
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
|
|
|
are not taken into account for computing the loss.
|
|
|
|
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
|
|
|
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
|
|
|
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
|
|
|
are not taken into account for computing the loss.
|
|
|
|
"""
|
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
|
|
|
|
outputs = self.transformer(
|
|
|
|
input_ids,
|
|
|
|
attention_mask=attention_mask,
|
|
|
|
position_ids=position_ids,
|
|
|
|
head_mask=head_mask,
|
|
|
|
inputs_embeds=inputs_embeds,
|
|
|
|
output_attentions=output_attentions,
|
|
|
|
output_hidden_states=output_hidden_states,
|
|
|
|
return_dict=return_dict,
|
|
|
|
)
|
|
|
|
|
|
|
|
sequence_output = outputs[0]
|
|
|
|
|
|
|
|
logits = self.qa_outputs(sequence_output)
|
|
|
|
start_logits, end_logits = logits.split(1, dim=-1)
|
|
|
|
start_logits = start_logits.squeeze(-1).contiguous()
|
|
|
|
end_logits = end_logits.squeeze(-1).contiguous()
|
|
|
|
|
|
|
|
total_loss = None
|
|
|
|
if start_positions is not None and end_positions is not None:
|
|
|
|
# If we are on multi-GPU, split add a dimension
|
|
|
|
if len(start_positions.size()) > 1:
|
|
|
|
start_positions = start_positions.squeeze(-1)
|
|
|
|
if len(end_positions.size()) > 1:
|
|
|
|
end_positions = end_positions.squeeze(-1)
|
|
|
|
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
|
|
|
ignored_index = start_logits.size(1)
|
|
|
|
start_positions = start_positions.clamp(0, ignored_index)
|
|
|
|
end_positions = end_positions.clamp(0, ignored_index)
|
|
|
|
|
|
|
|
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
|
|
|
start_loss = loss_fct(start_logits, start_positions)
|
|
|
|
end_loss = loss_fct(end_logits, end_positions)
|
|
|
|
total_loss = (start_loss + end_loss) / 2
|
|
|
|
|
|
|
|
if not return_dict:
|
|
|
|
output = (start_logits, end_logits) + outputs[2:]
|
|
|
|
return ((total_loss,) + output) if total_loss is not None else output
|
|
|
|
|
|
|
|
return QuestionAnsweringModelOutput(
|
|
|
|
loss=total_loss,
|
|
|
|
start_logits=start_logits,
|
|
|
|
end_logits=end_logits,
|
|
|
|
hidden_states=outputs.hidden_states,
|
|
|
|
attentions=outputs.attentions,
|
|
|
|
)
|