Witllm/tools/mem_tracker.py

172 lines
5.9 KiB
Python
Raw Normal View History

2024-01-19 14:52:28 +08:00
import gc
import datetime
import inspect
import torch
import numpy as np
import torch.nn as nn
dtype_memory_size_dict = {
torch.float64: 64 / 8,
torch.double: 64 / 8,
torch.float32: 32 / 8,
torch.float: 32 / 8,
torch.float16: 16 / 8,
torch.half: 16 / 8,
torch.int64: 64 / 8,
torch.long: 64 / 8,
torch.int32: 32 / 8,
torch.int: 32 / 8,
torch.int16: 16 / 8,
torch.short: 16 / 6,
torch.uint8: 8 / 8,
torch.int8: 8 / 8,
}
# compatibility of torch1.0
if getattr(torch, "bfloat16", None) is not None:
dtype_memory_size_dict[torch.bfloat16] = 16 / 8
if getattr(torch, "bool", None) is not None:
dtype_memory_size_dict[torch.bool] = (
8 / 8
) # pytorch use 1 byte for a bool, see https://github.com/pytorch/pytorch/issues/41571
def get_mem_space(x):
try:
ret = dtype_memory_size_dict[x]
except KeyError:
print(f"dtype {x} is not supported!")
return ret
class MemTracker(object):
"""
Class used to track pytorch memory usage
Arguments:
detail(bool, default True): whether the function shows the detail gpu memory usage
path(str): where to save log file
verbose(bool, default False): whether show the trivial exception
device(int): GPU number, default is 0
"""
def __init__(self, detail=True, path="", verbose=False, device=0):
self.print_detail = detail
self.last_tensor_sizes = set()
self.gpu_profile_fn = path + f"{datetime.datetime.now():%d-%b-%y-%H:%M:%S}-gpu_mem_track.txt"
self.verbose = verbose
self.begin = True
self.device = device
def get_tensors(self):
for obj in gc.get_objects():
try:
if torch.is_tensor(obj) or (hasattr(obj, "data") and torch.is_tensor(obj.data)):
tensor = obj
else:
continue
if tensor.is_cuda:
yield tensor
except Exception as e:
if self.verbose:
print("A trivial exception occured: {}".format(e))
def get_tensor_usage(self):
sizes = [np.prod(np.array(tensor.size())) * get_mem_space(tensor.dtype) for tensor in self.get_tensors()]
return np.sum(sizes) / 1024**2
def get_allocate_usage(self):
return torch.cuda.memory_allocated() / 1024**2
def clear_cache(self):
gc.collect()
torch.cuda.empty_cache()
def print_all_gpu_tensor(self, file=None):
for x in self.get_tensors():
print(x.size(), x.dtype, np.prod(np.array(x.size())) * get_mem_space(x.dtype) / 1024**2, file=file)
def track(self):
"""
Track the GPU memory usage
"""
frameinfo = inspect.stack()[1]
where_str = frameinfo.filename + " line " + str(frameinfo.lineno) + ": " + frameinfo.function
with open(self.gpu_profile_fn, "a+") as f:
if self.begin:
f.write(
f"GPU Memory Track | {datetime.datetime.now():%d-%b-%y-%H:%M:%S} |"
f" Total Tensor Used Memory:{self.get_tensor_usage():<7.1f}Mb"
f" Total Allocated Memory:{self.get_allocate_usage():<7.1f}Mb\n\n"
)
self.begin = False
if self.print_detail is True:
ts_list = [(tensor.size(), tensor.dtype) for tensor in self.get_tensors()]
new_tensor_sizes = {
(
type(x),
tuple(x.size()),
ts_list.count((x.size(), x.dtype)),
np.prod(np.array(x.size())) * get_mem_space(x.dtype) / 1024**2,
x.dtype,
)
for x in self.get_tensors()
}
for t, s, n, m, data_type in new_tensor_sizes - self.last_tensor_sizes:
f.write(
f"+ | {str(n)} * Size:{str(s):<20} | Memory: {str(m*n)[:6]} M | {str(t):<20} | {data_type}\n"
)
for t, s, n, m, data_type in self.last_tensor_sizes - new_tensor_sizes:
f.write(
f"- | {str(n)} * Size:{str(s):<20} | Memory: {str(m*n)[:6]} M | {str(t):<20} | {data_type}\n"
)
self.last_tensor_sizes = new_tensor_sizes
f.write(
f"\nAt {where_str:<50}"
f" Total Tensor Used Memory:{self.get_tensor_usage():<7.1f}Mb"
f" Total Allocated Memory:{self.get_allocate_usage():<7.1f}Mb\n\n"
)
def ModelSize(model, input, type_size=4):
para = sum([np.prod(list(p.size())) for p in model.parameters()])
# print('Model {} : Number of params: {}'.format(model._get_name(), para))
print("Model {} : params: {:4f}M".format(model._get_name(), para * type_size / 1000 / 1000))
input_ = input.clone()
input_.requires_grad_(requires_grad=False)
mods = list(model.modules())
out_sizes = []
for i in range(1, len(mods)):
m = mods[i]
if isinstance(m, nn.ReLU):
if m.inplace:
continue
out = m(input_)
out_sizes.append(np.array(out.size()))
input_ = out
total_nums = 0
for i in range(len(out_sizes)):
s = out_sizes[i]
nums = np.prod(np.array(s))
total_nums += nums
# print('Model {} : Number of intermedite variables without backward: {}'.format(model._get_name(), total_nums))
# print('Model {} : Number of intermedite variables with backward: {}'.format(model._get_name(), total_nums*2))
print(
"Model {} : intermedite variables: {:3f} M (without backward)".format(
model._get_name(), total_nums * type_size / 1000 / 1000
)
)
print(
"Model {} : intermedite variables: {:3f} M (with backward)".format(
model._get_name(), total_nums * type_size * 2 / 1000 / 1000
)
)