Witllm/qwen/research_attention.py

127 lines
3.5 KiB
Python
Raw Normal View History

2024-01-21 16:46:00 +08:00
import torch
import sys
2024-01-21 17:54:05 +08:00
import math
2024-01-21 16:46:00 +08:00
from modelscope import snapshot_download
from transformers import AutoTokenizer
from transformers import AutoConfig
from modeling_qwen import QWenLMHeadModel
from modeling_qwen import QwenRunner
2024-01-21 17:54:05 +08:00
import torch.nn.functional as F
2024-01-22 20:57:27 +08:00
from qwen_generation_utils import (
make_context,
decode_tokens,
)
2024-01-21 16:46:00 +08:00
sys.path.append("..")
from tools import show
seed = 4321
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
model_dir = snapshot_download("qwen/Qwen-1_8B-Chat")
# model_dir = "/home/colin/.cache/modelscope/hub/qwen/Qwen-1_8B-Chat"
config, kwargs = AutoConfig.from_pretrained(
"./",
return_unused_kwargs=True,
trust_remote_code=True,
code_revision=None,
_commit_hash=None,
)
model = QWenLMHeadModel(config)
print(model)
tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
2024-01-22 20:57:27 +08:00
model = model.from_pretrained(model_dir)
2024-01-21 16:46:00 +08:00
model = model.eval()
2024-01-22 20:57:27 +08:00
def Dump_tokens_list(model):
tokens = []
for token in range(config.eos_token_id):
decoded, response, end_reason = decode_tokens(
[token],
tokenizer,
raw_text_len=0,
context_length=0,
errors="replace",
)
2024-01-24 21:22:03 +08:00
tokens.append(str(token).zfill(7) + ": " + repr(decoded))
2024-01-22 20:57:27 +08:00
show.DumpListToFile(tokens, "./temp/qwen_token_list.txt")
# Dump_tokens_list(model)
def Dump_lm_head_weight(model):
weight = model.lm_head.weight.cpu() # [151936,2048,]
weight = weight.reshape(64, -1, 2048)
for i in range(64):
sub = weight[i].reshape(-1, 64, 32)
show.DumpTensorToImage(sub, "./temp/lm_head_" + str(i) + "_2374_2048.png")
# Dump_lm_head_weight(model)
def DumpQK(query, key, causal_mask, index):
scale_factor = 1 / math.sqrt(query.size(-1))
attn_weight = query @ key.transpose(-2, -1) * scale_factor
attn_weight = torch.softmax(attn_weight, dim=-1)
size = query.shape[2]
attn_mask = torch.ones(causal_mask.shape, dtype=query.dtype, device=query.device)
attn_mask.masked_fill_(causal_mask.logical_not(), float(0))
qk = attn_weight * attn_mask
qk = qk[0]
prePath = "./temp/" + "q@k_seq_" + str(size) + "_layer_" + str(index) + ".png"
show.DumpTensorToImage(qk, prePath, GridValue=255)
2024-01-21 16:46:00 +08:00
class ResearchRunner(QwenRunner):
def __init__(self, model):
super().__init__(model)
2024-01-21 17:54:05 +08:00
def attention(self, attention, query, key, value, causal_mask):
query = query.permute(0, 2, 1, 3)
key = key.permute(0, 2, 1, 3)
value = value.permute(0, 2, 1, 3)
DumpQK(query, key, causal_mask, attention.index)
2024-01-21 17:54:05 +08:00
attn_output = F.scaled_dot_product_attention(query, key, value, attn_mask=causal_mask).transpose(1, 2)
context_layer = attention._merge_heads(attn_output, attention.num_heads, attention.head_dim)
attn_output = attention.c_proj(context_layer)
return attn_output
2024-01-21 16:46:00 +08:00
runner = ResearchRunner(model)
# 第一轮对话
2024-01-24 21:22:03 +08:00
output_ids, history, decoded = runner.Chat(tokenizer, "东南亚国家日本的首都是什么市", "日本的首都是")
print(decoded)
tokens = []
for i, token in enumerate(output_ids):
de = tokenizer.decode([token])
de = str(i).zfill(3) + " : " + repr(de)
tokens.append(de)
print(de)
2024-01-21 16:46:00 +08:00
# <|im_start|>system
# You are a helpful assistant.<|im_end|>
# <|im_start|>user
# 东南亚国家日本的首都是什么市<|im_end|>
# <|im_start|>assistant
# 日本的首都东京。<|im_end|>
# <|endoftext|>
2024-01-22 20:57:27 +08:00
2024-01-24 21:22:03 +08:00
show.DumpListToFile(tokens, "./temp/token_decode_list.txt")
2024-01-24 21:22:03 +08:00
if decoded.split("\n")[-2] != """日本的首都东京。<|im_end|>""":
2024-01-21 16:46:00 +08:00
raise ()