83 lines
2.2 KiB
Python
83 lines
2.2 KiB
Python
|
import pytorch_lightning as pl
|
||
|
import torch
|
||
|
from torch.utils.data import DataLoader, Dataset, random_split
|
||
|
|
||
|
from lit_module import LitModule
|
||
|
from logger import TBLogger
|
||
|
|
||
|
from wit.configuration import ModelConfig
|
||
|
|
||
|
pretrain_model_name = None # "qwen/Qwen-1_8B-Chat"
|
||
|
learning_rate = 0.0001
|
||
|
use_tril_attention_mask = None
|
||
|
precision = "32-true" # "precision:bf16-mixed,16-mixed,32-true"
|
||
|
train_batch_size = 4
|
||
|
val_batch_size = 8
|
||
|
num_proc = 8
|
||
|
max_epochs = 1000
|
||
|
strategy = "auto"
|
||
|
resume_from_ckpt_path = None
|
||
|
seed = 42
|
||
|
|
||
|
|
||
|
class StressDataset(Dataset):
|
||
|
def __init__(self, start=1, end=128, size=32768): # 1048576 32768
|
||
|
self.size = size
|
||
|
self.features = []
|
||
|
self.data = torch.randint(start, end, [size, 2048]).long()
|
||
|
|
||
|
def __len__(self):
|
||
|
return self.size
|
||
|
|
||
|
def __getitem__(self, idx):
|
||
|
output = {}
|
||
|
data = self.data[idx]
|
||
|
output["input_ids"] = data
|
||
|
output["labels"] = data.clone()
|
||
|
output["token_type_ids"] = torch.zeros(data.shape)
|
||
|
return output
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
torch.manual_seed(seed)
|
||
|
|
||
|
config = ModelConfig()
|
||
|
config.vocab_size = 4096
|
||
|
config.hidden_size = 1024 # 128 1024 2048 32
|
||
|
config.num_hidden_layers = 6 # 6 12 24 3
|
||
|
config.num_attention_heads = 8 # 8 8 16
|
||
|
|
||
|
lit_module = LitModule(pretrain_model_name, learning_rate, config, use_tril_attention_mask)
|
||
|
|
||
|
raw_dataset = StressDataset()
|
||
|
train_dataset, val_dataset = random_split(raw_dataset, [0.95, 0.05])
|
||
|
|
||
|
train_dataloader = DataLoader(
|
||
|
train_dataset,
|
||
|
batch_size=train_batch_size,
|
||
|
num_workers=num_proc,
|
||
|
persistent_workers=True,
|
||
|
shuffle=True,
|
||
|
)
|
||
|
val_dataloader = DataLoader(
|
||
|
val_dataset,
|
||
|
batch_size=val_batch_size,
|
||
|
num_workers=num_proc,
|
||
|
persistent_workers=True,
|
||
|
)
|
||
|
|
||
|
lit_trainer = pl.Trainer(
|
||
|
accelerator="gpu",
|
||
|
devices=2,
|
||
|
precision=precision,
|
||
|
logger=TBLogger("./", default_hp_metric=False),
|
||
|
strategy=strategy,
|
||
|
max_epochs=max_epochs,
|
||
|
)
|
||
|
lit_trainer.fit(
|
||
|
lit_module,
|
||
|
train_dataloaders=train_dataloader,
|
||
|
val_dataloaders=val_dataloader,
|
||
|
ckpt_path=resume_from_ckpt_path,
|
||
|
)
|