178 lines
7.7 KiB
Python
178 lines
7.7 KiB
Python
|
# coding=utf-8
|
||
|
# Copyright 2022 The HuggingFace Inc. team.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
"""Tokenization classes for Bloom."""
|
||
|
|
||
|
|
||
|
import pickle
|
||
|
from typing import Optional, Tuple
|
||
|
|
||
|
from transformers.tokenization_utils_base import BatchEncoding
|
||
|
from transformers.tokenization_utils_fast import PreTrainedTokenizerFast
|
||
|
from transformers.utils import logging
|
||
|
|
||
|
|
||
|
logger = logging.get_logger(__name__)
|
||
|
|
||
|
VOCAB_FILES_NAMES = {"tokenizer_file": "tokenizer.json"}
|
||
|
|
||
|
PRETRAINED_VOCAB_FILES_MAP = {
|
||
|
"tokenizer_file": {
|
||
|
"bigscience/tokenizer": "https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json",
|
||
|
"bigscience/bloom-560m": "https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json",
|
||
|
"bigscience/bloom-1b1": "https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json",
|
||
|
"bigscience/bloom-1b7": "https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json",
|
||
|
"bigscience/bloom-3b": "https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json",
|
||
|
"bigscience/bloom-7b1": "https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json",
|
||
|
"bigscience/bloom": "https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json",
|
||
|
},
|
||
|
}
|
||
|
|
||
|
|
||
|
class BloomTokenizerFast(PreTrainedTokenizerFast):
|
||
|
"""
|
||
|
Construct a "fast" Bloom tokenizer (backed by HuggingFace's *tokenizers* library). Based on byte-level
|
||
|
Byte-Pair-Encoding.
|
||
|
|
||
|
This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will
|
||
|
be encoded differently whether it is at the beginning of the sentence (without space) or not:
|
||
|
|
||
|
```python
|
||
|
>>> from transformers import BloomTokenizerFast
|
||
|
|
||
|
>>> tokenizer = BloomTokenizerFast.from_pretrained("bigscience/bloom")
|
||
|
>>> tokenizer("Hello world")["input_ids"]
|
||
|
[59414, 8876]
|
||
|
|
||
|
>>> tokenizer(" Hello world")["input_ids"]
|
||
|
[86153, 8876]
|
||
|
```
|
||
|
|
||
|
You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer, but since
|
||
|
the model was not pretrained this way, it might yield a decrease in performance.
|
||
|
|
||
|
<Tip>
|
||
|
|
||
|
When used with `is_split_into_words=True`, this tokenizer needs to be instantiated with `add_prefix_space=True`.
|
||
|
|
||
|
</Tip>
|
||
|
|
||
|
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
|
||
|
refer to this superclass for more information regarding those methods.
|
||
|
|
||
|
Args:
|
||
|
vocab_file (`str`):
|
||
|
Path to the vocabulary file.
|
||
|
merges_file (`str`):
|
||
|
Path to the merges file.
|
||
|
errors (`str`, *optional*, defaults to `"replace"`):
|
||
|
Paradigm to follow when decoding bytes to UTF-8. See
|
||
|
[bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information.
|
||
|
unk_token (`str`, *optional*, defaults to `<|endoftext|>`):
|
||
|
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
||
|
token instead.
|
||
|
bos_token (`str`, *optional*, defaults to `<|endoftext|>`):
|
||
|
The beginning of sequence token.
|
||
|
eos_token (`str`, *optional*, defaults to `<|endoftext|>`):
|
||
|
The end of sequence token.
|
||
|
add_prefix_space (`bool`, *optional*, defaults to `False`):
|
||
|
Whether or not to add an initial space to the input. This allows to treat the leading word just as any
|
||
|
other word. (Bloom tokenizer detect beginning of words by the preceding space).
|
||
|
trim_offsets (`bool`, *optional*, defaults to `True`):
|
||
|
Whether or not the post-processing step should trim offsets to avoid including whitespaces.
|
||
|
"""
|
||
|
|
||
|
vocab_files_names = VOCAB_FILES_NAMES
|
||
|
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
||
|
model_input_names = ["input_ids", "attention_mask"]
|
||
|
slow_tokenizer_class = None
|
||
|
# No `max_model_input_sizes` as BLOOM uses ALiBi positional embeddings
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
vocab_file=None,
|
||
|
merges_file=None,
|
||
|
tokenizer_file=None,
|
||
|
unk_token="<unk>",
|
||
|
bos_token="<s>",
|
||
|
eos_token="</s>",
|
||
|
pad_token="<pad>",
|
||
|
add_prefix_space=False,
|
||
|
clean_up_tokenization_spaces=False,
|
||
|
**kwargs,
|
||
|
):
|
||
|
super().__init__(
|
||
|
vocab_file,
|
||
|
merges_file,
|
||
|
tokenizer_file=tokenizer_file,
|
||
|
unk_token=unk_token,
|
||
|
bos_token=bos_token,
|
||
|
eos_token=eos_token,
|
||
|
pad_token=pad_token,
|
||
|
add_prefix_space=add_prefix_space,
|
||
|
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
||
|
**kwargs,
|
||
|
)
|
||
|
# TODO @ArthurZucker this can only work one way for now, to update later-on. Tests should also properly
|
||
|
# check this as they were green before.
|
||
|
pre_tok_state = pickle.dumps(self.backend_tokenizer.pre_tokenizer)
|
||
|
decoder_state = pickle.dumps(self.backend_tokenizer.decoder)
|
||
|
|
||
|
if add_prefix_space:
|
||
|
pre_tok_state = pre_tok_state.replace(b'"add_prefix_space":false', b'"add_prefix_space": true')
|
||
|
decoder_state = decoder_state.replace(b'"add_prefix_space":false', b'"add_prefix_space": true')
|
||
|
self.backend_tokenizer.pre_tokenizer = pickle.loads(pre_tok_state)
|
||
|
self.backend_tokenizer.decoder = pickle.loads(decoder_state)
|
||
|
|
||
|
self.add_prefix_space = add_prefix_space
|
||
|
|
||
|
def _batch_encode_plus(self, *args, **kwargs) -> BatchEncoding:
|
||
|
is_split_into_words = kwargs.get("is_split_into_words", False)
|
||
|
if not (self.add_prefix_space or not is_split_into_words):
|
||
|
raise Exception(
|
||
|
f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with"
|
||
|
" pretokenized inputs."
|
||
|
)
|
||
|
|
||
|
return super()._batch_encode_plus(*args, **kwargs)
|
||
|
|
||
|
def _encode_plus(self, *args, **kwargs) -> BatchEncoding:
|
||
|
is_split_into_words = kwargs.get("is_split_into_words", False)
|
||
|
|
||
|
if not (self.add_prefix_space or not is_split_into_words):
|
||
|
raise Exception(
|
||
|
f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with"
|
||
|
" pretokenized inputs."
|
||
|
)
|
||
|
|
||
|
return super()._encode_plus(*args, **kwargs)
|
||
|
|
||
|
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
||
|
files = self._tokenizer.model.save(save_directory, name=filename_prefix)
|
||
|
return tuple(files)
|
||
|
|
||
|
@property
|
||
|
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.default_chat_template
|
||
|
def default_chat_template(self):
|
||
|
"""
|
||
|
A simple chat template that ignores role information and just concatenates messages with EOS tokens.
|
||
|
"""
|
||
|
logger.warning_once(
|
||
|
"\nNo chat template is defined for this tokenizer - using the default template "
|
||
|
f"for the {self.__class__.__name__} class. If the default is not appropriate for "
|
||
|
"your model, please set `tokenizer.chat_template` to an appropriate template. "
|
||
|
"See https://huggingface.co/docs/transformers/main/chat_templating for more information.\n"
|
||
|
)
|
||
|
return "{% for message in messages %}" "{{ message.content }}{{ eos_token }}" "{% endfor %}"
|