2024-01-03 21:03:27 +08:00
|
|
|
# Copyright (c) Alibaba Cloud.
|
|
|
|
#
|
|
|
|
# This source code is licensed under the license found in the
|
|
|
|
# LICENSE file in the root directory of this source tree.
|
|
|
|
|
|
|
|
"""Generation support."""
|
|
|
|
|
|
|
|
from typing import Tuple, List, Union, Iterable
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import torch
|
|
|
|
import torch.nn.functional as F
|
|
|
|
from transformers import PreTrainedTokenizer
|
|
|
|
from transformers import logging
|
|
|
|
from transformers.generation import LogitsProcessor
|
|
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
|
|
# Types.
|
|
|
|
HistoryType = List[Tuple[str, str]]
|
|
|
|
TokensType = List[int]
|
|
|
|
BatchTokensType = List[List[int]]
|
|
|
|
|
|
|
|
|
|
|
|
def pad_batch(batch: BatchTokensType, pad_id: int, seq_length: int) -> BatchTokensType:
|
|
|
|
for tokens in batch:
|
|
|
|
context_length = len(tokens)
|
|
|
|
if context_length < seq_length:
|
|
|
|
tokens.extend([pad_id] * (seq_length - context_length))
|
|
|
|
return batch
|
|
|
|
|
|
|
|
|
|
|
|
def get_ltor_masks_and_position_ids(
|
|
|
|
data,
|
|
|
|
eod_token,
|
|
|
|
reset_position_ids,
|
|
|
|
reset_attention_mask,
|
|
|
|
eod_mask_loss,
|
|
|
|
):
|
|
|
|
"""Build masks and position id for left to right model."""
|
|
|
|
|
|
|
|
# Extract batch size and sequence length.
|
|
|
|
micro_batch_size, seq_length = data.size()
|
|
|
|
|
|
|
|
# Attention mask (lower triangular).
|
|
|
|
if reset_attention_mask:
|
|
|
|
att_mask_batch = micro_batch_size
|
|
|
|
else:
|
|
|
|
att_mask_batch = 1
|
|
|
|
attention_mask = torch.tril(
|
|
|
|
torch.ones((att_mask_batch, seq_length, seq_length), device=data.device)
|
|
|
|
).view(att_mask_batch, 1, seq_length, seq_length)
|
|
|
|
|
|
|
|
# Loss mask.
|
|
|
|
loss_mask = torch.ones(data.size(), dtype=torch.float, device=data.device)
|
|
|
|
if eod_mask_loss:
|
|
|
|
loss_mask[data == eod_token] = 0.0
|
|
|
|
|
|
|
|
# Position ids.
|
|
|
|
position_ids = torch.arange(seq_length, dtype=torch.long, device=data.device)
|
|
|
|
position_ids = position_ids.unsqueeze(0).expand_as(data)
|
|
|
|
# We need to clone as the ids will be modifed based on batch index.
|
|
|
|
if reset_position_ids:
|
|
|
|
position_ids = position_ids.clone()
|
|
|
|
|
|
|
|
if reset_position_ids or reset_attention_mask:
|
|
|
|
# Loop through the batches:
|
|
|
|
for b in range(micro_batch_size):
|
|
|
|
|
|
|
|
# Find indecies where EOD token is.
|
|
|
|
eod_index = position_ids[b, data[b] == eod_token]
|
|
|
|
# Detach indecies from positions if going to modify positions.
|
|
|
|
if reset_position_ids:
|
|
|
|
eod_index = eod_index.clone()
|
|
|
|
|
|
|
|
# Loop through EOD indecies:
|
|
|
|
prev_index = 0
|
|
|
|
for j in range(eod_index.size()[0]):
|
|
|
|
i = eod_index[j]
|
|
|
|
# Mask attention loss.
|
|
|
|
if reset_attention_mask:
|
|
|
|
attention_mask[b, 0, (i + 1) :, : (i + 1)] = 0
|
|
|
|
# Reset positions.
|
|
|
|
if reset_position_ids:
|
|
|
|
position_ids[b, (i + 1) :] -= i + 1 - prev_index
|
|
|
|
prev_index = i + 1
|
|
|
|
|
|
|
|
# Convert attention mask to binary:
|
|
|
|
attention_mask = attention_mask < 0.5
|
|
|
|
|
|
|
|
return attention_mask, loss_mask, position_ids
|
|
|
|
|
|
|
|
|
|
|
|
def get_batch(context_tokens: torch.LongTensor, eod_id: int):
|
|
|
|
"""Generate batch from context tokens."""
|
|
|
|
# Move to GPU.
|
|
|
|
tokens = context_tokens.contiguous().to(context_tokens.device)
|
|
|
|
# Get the attention mask and postition ids.
|
|
|
|
attention_mask, _, position_ids = get_ltor_masks_and_position_ids(
|
|
|
|
tokens,
|
|
|
|
eod_id,
|
|
|
|
reset_position_ids=False,
|
|
|
|
reset_attention_mask=False,
|
|
|
|
eod_mask_loss=False,
|
|
|
|
)
|
|
|
|
return tokens, attention_mask, position_ids
|
|
|
|
|
|
|
|
def make_context(
|
|
|
|
tokenizer: PreTrainedTokenizer,
|
|
|
|
query: str,
|
2024-01-10 19:35:46 +08:00
|
|
|
query_assistant: str = "",
|
2024-01-03 21:03:27 +08:00
|
|
|
history: List[Tuple[str, str]] = None,
|
|
|
|
system: str = "",
|
2024-01-10 19:35:46 +08:00
|
|
|
max_window_size: int = 6144
|
2024-01-03 21:03:27 +08:00
|
|
|
):
|
|
|
|
if history is None:
|
|
|
|
history = []
|
|
|
|
|
2024-01-10 19:35:46 +08:00
|
|
|
im_start, im_end = "<|im_start|>", "<|im_end|>"
|
|
|
|
im_start_tokens = [tokenizer.im_start_id]
|
|
|
|
im_end_tokens = [tokenizer.im_end_id]
|
|
|
|
nl_tokens = tokenizer.encode("\n")
|
|
|
|
|
|
|
|
def _tokenize_str(role, content):
|
|
|
|
return f"{role}\n{content}", tokenizer.encode(
|
|
|
|
role, allowed_special=set()
|
|
|
|
) + nl_tokens + tokenizer.encode(content, allowed_special=set())
|
|
|
|
|
|
|
|
system_text, system_tokens_part = _tokenize_str("system", system)
|
|
|
|
system_tokens = im_start_tokens + system_tokens_part + im_end_tokens
|
|
|
|
assistant_tokens = tokenizer.encode(query_assistant, allowed_special=set())
|
|
|
|
raw_text = ""
|
|
|
|
context_tokens = []
|
|
|
|
|
|
|
|
for turn_query, turn_response in reversed(history):
|
|
|
|
query_text, query_tokens_part = _tokenize_str("user", turn_query)
|
|
|
|
query_tokens = im_start_tokens + query_tokens_part + im_end_tokens
|
|
|
|
response_text, response_tokens_part = _tokenize_str(
|
|
|
|
"assistant", turn_response
|
2024-01-03 21:03:27 +08:00
|
|
|
)
|
2024-01-10 19:35:46 +08:00
|
|
|
response_tokens = im_start_tokens + response_tokens_part + im_end_tokens
|
2024-01-03 21:03:27 +08:00
|
|
|
|
2024-01-10 19:35:46 +08:00
|
|
|
next_context_tokens = nl_tokens + query_tokens + nl_tokens + response_tokens
|
|
|
|
prev_chat = (
|
|
|
|
f"\n{im_start}{query_text}{im_end}\n{im_start}{response_text}{im_end}"
|
|
|
|
)
|
2024-01-03 21:03:27 +08:00
|
|
|
|
2024-01-10 19:35:46 +08:00
|
|
|
current_context_size = (
|
|
|
|
len(system_tokens) + len(next_context_tokens) + len(context_tokens)
|
|
|
|
)
|
|
|
|
if current_context_size < max_window_size:
|
|
|
|
context_tokens = next_context_tokens + context_tokens
|
|
|
|
raw_text = prev_chat + raw_text
|
|
|
|
else:
|
2024-01-03 21:03:27 +08:00
|
|
|
break
|
|
|
|
|
2024-01-10 19:35:46 +08:00
|
|
|
context_tokens = system_tokens + context_tokens
|
|
|
|
raw_text = f"{im_start}{system_text}{im_end}" + raw_text
|
|
|
|
context_tokens += (
|
|
|
|
nl_tokens
|
|
|
|
+ im_start_tokens
|
|
|
|
+ _tokenize_str("user", query)[1]
|
|
|
|
+ im_end_tokens
|
|
|
|
+ nl_tokens
|
|
|
|
+ im_start_tokens
|
|
|
|
+ tokenizer.encode("assistant")
|
|
|
|
+ nl_tokens
|
|
|
|
+ assistant_tokens
|
|
|
|
)
|
|
|
|
raw_text += f"\n{im_start}user\n{query}{im_end}\n{im_start}assistant\n{query_assistant}"
|
2024-01-03 21:03:27 +08:00
|
|
|
|
2024-01-10 19:35:46 +08:00
|
|
|
return raw_text, context_tokens
|
2024-01-03 21:03:27 +08:00
|
|
|
|
|
|
|
def decode_tokens(
|
|
|
|
tokens: Union[torch.LongTensor, TokensType],
|
|
|
|
tokenizer: PreTrainedTokenizer,
|
|
|
|
raw_text_len: int,
|
|
|
|
context_length: int,
|
|
|
|
errors: str="replace",
|
|
|
|
) -> str:
|
|
|
|
if torch.is_tensor(tokens):
|
|
|
|
tokens = tokens.cpu().numpy().tolist()
|
|
|
|
|
2024-01-10 19:35:46 +08:00
|
|
|
end_reason = f"Gen length {len(tokens)}"
|
|
|
|
eod_token_idx = context_length
|
|
|
|
for eod_token_idx in range(context_length, len(tokens)):
|
|
|
|
if tokens[eod_token_idx] in [tokenizer.im_start_id, tokenizer.im_end_id]:
|
|
|
|
end_reason = f"Gen {tokenizer.decode([tokens[eod_token_idx]])!r}"
|
|
|
|
break
|
|
|
|
|
|
|
|
decoded = tokenizer.decode(tokens, errors=errors)
|
|
|
|
|
|
|
|
decode_tokens = tokenizer.decode(tokens[:eod_token_idx], errors=errors)
|
|
|
|
trim_decode_tokens = decode_tokens[raw_text_len:]
|
|
|
|
trim_decode_tokens = trim_decode_tokens.strip()
|
|
|
|
|
|
|
|
return decoded, trim_decode_tokens, end_reason
|
2024-01-03 21:03:27 +08:00
|
|
|
|
|
|
|
|
|
|
|
class StopWordsLogitsProcessor(LogitsProcessor):
|
|
|
|
"""
|
|
|
|
:class:`transformers.LogitsProcessor` that enforces that when specified sequences appear, stop geration.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
stop_words_ids (:obj:`List[List[int]]`):
|
|
|
|
List of list of token ids of stop ids. In order to get the tokens of the words
|
|
|
|
that should not appear in the generated text, use :obj:`tokenizer(bad_word,
|
|
|
|
add_prefix_space=True).input_ids`.
|
|
|
|
eos_token_id (:obj:`int`):
|
|
|
|
The id of the `end-of-sequence` token.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, stop_words_ids: Iterable[Iterable[int]], eos_token_id: int):
|
|
|
|
|
|
|
|
if not isinstance(stop_words_ids, List) or len(stop_words_ids) == 0:
|
|
|
|
raise ValueError(
|
|
|
|
f"`stop_words_ids` has to be a non-emtpy list, but is {stop_words_ids}."
|
|
|
|
)
|
|
|
|
if any(not isinstance(bad_word_ids, list) for bad_word_ids in stop_words_ids):
|
|
|
|
raise ValueError(
|
|
|
|
f"`stop_words_ids` has to be a list of lists, but is {stop_words_ids}."
|
|
|
|
)
|
|
|
|
if any(
|
|
|
|
any(
|
|
|
|
(not isinstance(token_id, (int, np.integer)) or token_id < 0)
|
|
|
|
for token_id in stop_word_ids
|
|
|
|
)
|
|
|
|
for stop_word_ids in stop_words_ids
|
|
|
|
):
|
|
|
|
raise ValueError(
|
|
|
|
f"Each list in `stop_words_ids` has to be a list of positive integers, but is {stop_words_ids}."
|
|
|
|
)
|
|
|
|
|
|
|
|
self.stop_words_ids = list(
|
|
|
|
filter(
|
|
|
|
lambda bad_token_seq: bad_token_seq != [eos_token_id], stop_words_ids
|
|
|
|
)
|
|
|
|
)
|
|
|
|
self.eos_token_id = eos_token_id
|
|
|
|
for stop_token_seq in self.stop_words_ids:
|
|
|
|
assert (
|
|
|
|
len(stop_token_seq) > 0
|
|
|
|
), "Stop words token sequences {} cannot have an empty list".format(
|
|
|
|
stop_words_ids
|
|
|
|
)
|
|
|
|
|
|
|
|
def __call__(
|
|
|
|
self, input_ids: torch.LongTensor, scores: torch.FloatTensor
|
|
|
|
) -> torch.FloatTensor:
|
|
|
|
stopped_samples = self._calc_stopped_samples(input_ids)
|
|
|
|
for i, should_stop in enumerate(stopped_samples):
|
|
|
|
if should_stop:
|
|
|
|
scores[i, self.eos_token_id] = float(2**15)
|
|
|
|
return scores
|
|
|
|
|
|
|
|
def _tokens_match(self, prev_tokens: torch.LongTensor, tokens: List[int]) -> bool:
|
|
|
|
if len(tokens) == 0:
|
|
|
|
# if bad word tokens is just one token always ban it
|
|
|
|
return True
|
|
|
|
elif len(tokens) > len(prev_tokens):
|
|
|
|
# if bad word tokens are longer then prev input_ids they can't be equal
|
|
|
|
return False
|
|
|
|
elif prev_tokens[-len(tokens) :].tolist() == tokens:
|
|
|
|
# if tokens match
|
|
|
|
return True
|
|
|
|
else:
|
|
|
|
return False
|
|
|
|
|
|
|
|
def _calc_stopped_samples(self, prev_input_ids: Iterable[int]) -> Iterable[int]:
|
|
|
|
stopped_samples = []
|
|
|
|
for prev_input_ids_slice in prev_input_ids:
|
|
|
|
match = False
|
|
|
|
for stop_token_seq in self.stop_words_ids:
|
|
|
|
if self._tokens_match(prev_input_ids_slice, stop_token_seq):
|
|
|
|
# if tokens do not match continue
|
|
|
|
match = True
|
|
|
|
break
|
|
|
|
stopped_samples.append(match)
|
|
|
|
|
|
|
|
return stopped_samples
|
|
|
|
|
|
|
|
|
|
|
|
def top_k_logits(logits, top_k=0, top_p=0.0, filter_value=-float("Inf")):
|
|
|
|
"""This function has been mostly taken from huggingface conversational
|
|
|
|
ai code at
|
|
|
|
https://medium.com/huggingface/how-to-build-a-state-of-the-art-
|
|
|
|
conversational-ai-with-transfer-learning-2d818ac26313"""
|
|
|
|
|
|
|
|
if top_k > 0:
|
|
|
|
# Remove all tokens with a probability less than the
|
|
|
|
# last token of the top-k
|
|
|
|
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
|
|
|
|
logits[indices_to_remove] = filter_value
|
|
|
|
|
|
|
|
if top_p > 0.0:
|
|
|
|
# Cconvert to 1D
|
|
|
|
sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1)
|
|
|
|
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
|
|
|
|
|
|
|
|
# Remove tokens with cumulative probability above the threshold
|
|
|
|
sorted_indices_to_remove = cumulative_probs > top_p
|
|
|
|
# Shift the indices to the right to keep also the first token
|
|
|
|
# above the threshold
|
|
|
|
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
|
|
|
|
sorted_indices_to_remove[..., 0] = 0
|
|
|
|
for i in range(sorted_indices.size(0)):
|
|
|
|
indices_to_remove = sorted_indices[i][sorted_indices_to_remove[i]]
|
|
|
|
logits[i][indices_to_remove] = filter_value
|
|
|
|
|
|
|
|
return logits
|
|
|
|
|
|
|
|
|
|
|
|
def switch(val1, val2, boolean):
|
|
|
|
boolean = boolean.type_as(val1)
|
|
|
|
return (1 - boolean) * val1 + boolean * val2
|